a) Рисунки треугольников с условнымиобозначениями.
в)Карточки-задания для устной работы.
c) Индивидуальные задания: практические задания, задачи на построение, задачи на конструирование.
d) Дополнительные карточки-задания.
e) Модели плоских фигур: треугольник, шестиугольник.
f) Конструкции из треугольников: флексатон, несколько видов пирамид,
g) Плакат с изображением пирамиды Хеопса в Гизе.
(Ученики на уроке разбиты на три группы-команды:
1-я группа - продвинутый уровень обучения;
2-я группа - базисный уровень обучения;
3-я группа - уровень компенсирующего обучения).
Ход урока:
Глядя на мир, нельзя не удивляться!
К. Прутков
Кто не слышал о Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый нам с детстватреугольник таит в себе немало интересного и загадочного. Сегодня на уроке мы будемповторять весь изученный материал и каждый раз удивляться полученным открытиям.
Условия состязания:
Быть внимательным и сообразительным.
Не оставлять ни одного вопроса без ответа.
На каждое задание затрачивать минимум времени, но максимумусердия.
Не подглядывать, неподслушивать, не «проникать» в мысли соседа.
I. Устная работа:
Класс: «Что такое треугольник?»
3 группа: Назовите вершины и стороны треугольника, изображенного на рисунке 1:
2группа: Какие виды треугольников вы знаете? По условным обозначениям определите вид треугольника (рис.2).
Рисунок 2
1 группа: Дайте определение равнобедренному и равностороннему треугольникам. Как по-другому называют равносторонний треугольник? Является ли равнобедренным равносторонний треугольник? Почему?
2 группа. Сколько всего треугольников изображено на рисунке 3?
Рисунок 3
1 группа. В равнобедренном треугольнике одна сторона равна 25 см, а другая 10 см. Какая из них является основанием треугольника?
Мы повторили, что треугольники бывают нескольких видов: равносторонние, равнобедренные, разносторонние.
IV. Задачи на построение
Добиться успеха в решении задач на построение поможет аккуратность и точность измерений, умение пользоваться чертежными инструментами и знание способа построения треугольника.
Сообщение 1. Что такое задачи на построение? (2-я группа).
В задачах на построение речь идет о построении геометрической фигуры с помощью линейки и циркуля. С помощью линейки как инструмента геометрических построений можно провести произвольную прямую; произвольную прямую, проходящую через данную точку; прямую, проходящую, через две данные точки. Никаких других операций выполнять линейкой нельзя. В частности, нельзя откладывать линейкой отрезок, даже если на ней имеются деления. Циркуль, как инструмент геометрических построений, позволяет описать из данного центра окружность данного радиуса. В частности, циркулем можно отложить данный отрезок на данной прямой от данной точки.
Все учащиеся 1-ой группы получают аналогичные задания и выполняют их самостоятельно.
2-ая группа. Постройте треугольник по заданным сторонам: 3 см, 4 см, 5 см.
Оставшиеся без задания ученики работают со второй группой, слушают подробное объяснение задачи.
3-я группа. Постройте равнобедренный треугольник со сторонами 5 см, 6 см, 5 см (один человек от группы).
Класс. Какие треугольники изображены на доске? Произведите классификацию треугольников по углам.
Сообщение 2. Египетский треугольник(3-я группа).
Землемеры Древнего Египта для построения прямого угла пользовались следующим приемом. Бечевку делили узлами на 12 равных частей и концы связывали. Затем бечевку растягивали на земле так, чтобы получался треугольник со сторонами 3, 4, 5 делений. Угол треугольника, противолежащий стороне с пятью делениями, был прямой. В связи с указанным способом построения прямого угла со сторонами 3,4,5 иногда называют египетским.
V. Конструкции из треугольников.
Треугольники, соединяясь друг с другом, могут образовывать другие фигуры. Например, шесть правильных одинаковых треугольников образуют шестиугольник. Шестиугольник, как и треугольник, плоская фигура (демонстрация плоских фигур). Конструкторами будут работать три ученика (карточки).
1-я группа. Равносторонний треугольник разрежьте на три равных треугольника.
2-я группа. Равносторонний треугольник разрежьте на четыре равных треугольника.
3-я группа. Разрежьте треугольник на две части так, чтобы из этих частей можно было сложить прямоугольник.
Существует интересная геометрическая игрушка - флексатон, что означает «гнущийся» многоугольник, который состоит из 10 равносторонних треугольников. Флексатон обладает удивительной способностью внезапно менять форму и цвет, выворачиваясь на «изнанку» (демонстрация флексатона).
Все это были примеры плоских конструкций из треугольников.
Класс. Назовите объёмную фигуру, состоящую из правильных треугольников (демонстрация тетраэдра).
Сообщение 3. Египетские пирамиды (1-я группа).
Египетские пирамиды - это одно из самых грандиозных сооружений, созданных когда-либо руками человека. Самая известная из египетских пирамид - пирамида Хеопса в Гизе. Из-за своих огромных размеров ее иногда еще называют Большой пирамидой. Ее высота составляет 146,6 м, что (примерно) соответствует 50-тиэтажному небоскребу. Площадь основания составляет 230 на 230 кв.м. Строительство пирамиды Хеопса продолжалось 30 лет. Она состояла из 128 слоев камня и представляла собой ступенчатую гору. Затем ступени были заложены камнями, так что ее поверхность стала хотя и не вполне гладкой, но уже без выступов. В завершение работ 4 треугольные грани пирамиды были облицованы плитами из ослепительно белого известняка и отполированы до зеркального блеска. Края плит были подогнаны настолько точно, что между ними нельзя вставить даже лезвие острого ножа. По свидетельству очевидцев, на солнце и при лунном свете гробница Хеопса сверкала, как огромный светящийся кристалл. Египетская пирамида Хеопса в Гизе – древнейшее и, вместе с тем, единственное сохранившееся до наших дней чудо света.
Пирамиды бывают 3-, 4-, 5-, 6-ти, … угольные. От чего это зависит?
Рассмотрим треугольную пирамиду, состоящую из правильных треугольников (демонстрация). Как она по-другому называется? Из каких частей она состоит? Сколько у нее граней? сторон? вершин?
Проверка индивидуального задания (демонстрация решения задач).
VI. Самостоятельная работа.
Среди семи частей «Танграма» есть пять треугольников. Сравните стороны каждого, Закрасьте треугольники:
равносторонние – красным;
равнобедренные – синим;
разносторонние - зеленым.
VII. Подведение итогов урока.
Мы повторили весь изученный материал по теме «Треугольник. Конструкции из треугольников». Закончим урок словами великого ученого Галилео Галилея: «Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать».