kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Урок "Метод интервалов" в 9 классе

Нажмите, чтобы узнать подробности

Утина Лариса Сергеевна

Учитель математики МБОУ «СОШ№4»

Г. Касимов Рязанской области

 

Конспект урока по теме

"Решение неравенств методом интервалов"

Цели:

Образовательная:

 - совершенствовать навыки применения метода интервалов при решении неравенств; Развивающая:

- показать учащимся возможность применения метода интервалов при решении неравенств различной сложности;

- развитие навыков логического мышления, умения анализировать, преодолевать трудности при решении математических задач, навыков самоконтроля, умения пользоваться опорными знаниями для их применения в новой ситуации;

Воспитательная:

- воспитывать ответственное отношение к учебному труду

- воспитывать дисциплинированность, собранность, высокую работоспособность.

Задачи:

-  отработать алгоритм решения неравенств методом интервалов,

- сформировать умение решать неравенства с модулем используя метод интервалов

- совершенствовать вычислительные навыки.

- закрепить умение «читать»  числовые промежутки и их обозначение;

Тип урока: комбинированный урок.

Методы обучения: объяснительно-иллюстративный, практический, частично-поисковый.

Формы обучения: коллективная, самостоятельная.

Технология: личностно-ориентированная.

Оборудование: компьютер, проектор, раздаточный материал (памятка, карточки с неравенствами, оценочная карта).

Ход урока

 

I. Сообщение темы и постановка целей урока.

– Сегодня на уроке мы повторим и закрепим умения решать неравенства методом интервалов. Повторим, какие неравенства удобнее решать данным способом. А также узнаем,  возможно ли,  применять данный метод для решения неравенств содержащих модуль.

II. Разминка:

Устные упражнения слайд 1 (лист самооценки):

1.  Назвать числовые промежутки и поставить соответствие рисункам

а) [-2; 1); полуинтервал от -2 до 1  соответствует рисунку 1    

б) (-5; 4); интервал от - 5 до 4         соответствует рисунку       

г) [-5; 4];      отрезок от 3 до 7         соответствует рисунку 2

д) [4; +∞). Полуинтервал от 4 до + бесконечности соответствует рисунку 3

 

  1.  

 2) 

3)    4)

 

2.  Какой промежуток соответствует неравенству -1  < х  ≤ 8?

а) [-1; 8];         б) )[-1;8);                    в) (-1; 8];                    г) (-1; 8).

III. Актуализация опорных знаний слайд2  (устно)

1.    Разложить на множители.
а) x2 − 16, б) 6x + 8x2, в) x2 − 5x + 6, г) x2 + 6x + 9.

2.   а) Назовите нули функции

1. f(х)= (х+3)(х-2)

2.  f(х)=х2(х-8)

3.  f(х)=(7-х)(х-4)2

 

1.  (х+3)(х-2)≤0

2.  х2(х-8)≥0

3.  (7-х)(х-4)2  ≤0

         б) Выберите те неравенства при решении которых  методом интервалов можно встретить соседние интервалы с одинаковыми знаками.

Вопрос:   Всегда ли чередуются знаки функции на промежутках? От чего это зависит?

Ответ:      Нет, не всегда, если показатель множителя четный, то знак неравенства при переходе через корень этого множителя не меняется, если нечетный, то меняется.

III – решение задания на  повторение. 

Решаем одно из приведенных выше неравенств, где встречаются соседние интервалы одного знака.

IV. Актуализация опорных знаний слайд 3  (устно)

  1. Найти область определения функций
  2. y= ;        y=

  х≥5                хЄR

 IV – решение задания на  повторение

Найти область определения функций  y =  . Находим область определения исходя из того что квадратный корень не определен из отрицательного числа

  а знаменатель дроби не может равняться 0

т.е.  ≠ 0 т.е. х≠7, х≠ -7 Решим неравенство

  1. ≥0.

 По свойству коэффициентов  х=1, х=-2 корни трехчлена

Неравенство примет вид ≥0 или ≤0

или ≤0

Рассмотрим функцию

изобразим решение неравенства на числовой прямой (отметим нули, воспользуемся чередованием знаков функции)

        +                 -     ?            +   ?       -                +

               -7             -2                  1                7

Ответ : (-7; -2 ] ∪ [1; 7)

 

 

V. Физкультминутка

Буратино потянулся,
Раз – нагнулся, два – нагнулся.
Руки в стороны развел,
Ключик видно не нашел.
Чтобы ключик нам достать,
Нужно на носочки встать.

 

VI. Актуализация опорных знаний  (устно)

 

Вспомним определение модуля (слайд7).

 

  1. Раскроем знак модуля Iх-2I

  2. если х-2≥0, Iх-2I= х-2

  3. если х-2≤0, Iх-2I= -( х-2)

    При каких значениях х, х-2≥0  (при х ≥2)

    При каких значениях х, х-2≤0  (при х ≥2)

  1. Раскрыть знак модуля,  используя определение модуля.

|х-3|

          

  1. |х-1| + |х-3| > 4

Как вы думаете можно использовать метод интервалов для решения неравенств с модулем?  Рассмотрим как используется метод интервалов для решения неравенств с модулем на примере данного неравенства.

VII. Ознакомление с новым материалом.

 (Для объяснения используем презентацию)

VI. Самостоятельная работа или коррекция знаний. (Слайд 10)

Решить неравенство

  1. |х-1| + |х-3| > 6-х

VIII. Итог урока.

  • Итак, какие неравенства вы научились сегодня решать?

  • Как решаются такие неравенства? Кто сможет рассказать алгоритм решения?

Домашнее задание:  

Решить неравенства

  1. < > < >≤0

    |х-1| +2 |х-3| > 5-х

 

Литература и интернет ресурсы:

  1)  А. Г. Мордкович «Алгебра и начала анализа 10-11», Мнемозина,2010;

  2)  В.А.Гусев, А.Г.Мордкович «Математика», Москва «Просвещение» 1988;

  3)  М. Л. Доброхотова, А. Н. Сафонов «Функция, её предел и производная», Москва
       «Просвещение» 1969;

  4) М. А. Родионов, В. П. Шершаков, Е. В. Марина «От простого к  сложному. Основные 
       методы решения уравнений и неравенств» учебно-методическое пособие для учителей,
       школьников и студентов; Пенза, 2001;

   5) С.Н.Олехник, М.К.Потапов, П.И.Пасиченко «Нестандартные методы решения уравнений
        и неравенств», Издательство московского университета, 1991.

   6) И. Ф. Шарыгин. «Факультативный курс по математике. Решение задач», Москва,

       «Просвещение», 1989.

   7) М. К. Потапов, А. В. Шевкин «Алгебра и начала анализа» Дидактические материалы
       для 11 класса, Москва, «Просвещение», 2007.

 

http://festival.1september.ru/articles/610856/ Урок алгебры по теме "Решение неравенств методом интервалов"

Презентация Трескиной В. Б.,учителя школы № 594  Московского района

 г. Санкт-Петербурга «Решение уравнений и неравенств, содержащих модуль, методом интервалов».

http://festival.1september.ru/articles/640080/ План-конспект урока по математике. 9 класс

Мухометзянова Галина Геннадьевна, учитель математики.

 

Показать полностью
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Урок "Метод интервалов" в 9 классе »

Утина Лариса Сергеевна Учитель математики МБОУ «СОШ№4» Г. Касимов Рязанской области Конспект урока по теме "Решение неравенств методом интервалов"

Цели:

Образовательная:

- совершенствовать навыки применения метода интервалов при решении неравенств; Развивающая:

- показать учащимся возможность применения метода интервалов при решении неравенств различной сложности;

- развитие навыков логического мышления, умения анализировать, преодолевать трудности при решении математических задач, навыков самоконтроля, умения пользоваться опорными знаниями для их применения в новой ситуации;

Воспитательная:

- воспитывать ответственное отношение к учебному труду

- воспитывать дисциплинированность, собранность, высокую работоспособность.

Задачи:

- отработать алгоритм решения неравенств методом интервалов,

- сформировать умение решать неравенства с модулем используя метод интервалов

- совершенствовать вычислительные навыки.

- закрепить умение «читать» числовые промежутки и их обозначение;

Тип урока: комбинированный урок.

Методы обучения: объяснительно-иллюстративный, практический, частично-поисковый.

Формы обучения: коллективная, самостоятельная.

Технология: личностно-ориентированная.

Оборудование: компьютер, проектор, раздаточный материал (памятка, карточки с неравенствами, оценочная карта).

Ход урока



I. Сообщение темы и постановка целей урока.

– Сегодня на уроке мы повторим и закрепим умения решать неравенства методом интервалов. Повторим, какие неравенства удобнее решать данным способом. А также узнаем, возможно ли, применять данный метод для решения неравенств содержащих модуль.

II. Разминка:

Устные упражнения слайд 1 (лист самооценки):

1. Назвать числовые промежутки и поставить соответствие рисункам

а) [-2; 1); полуинтервал от -2 до 1 соответствует рисунку 1

б) (-5; 4); интервал от - 5 до 4 соответствует рисунку

г) [-5; 4]; отрезок от 3 до 7 соответствует рисунку 2

д) [4; +∞). Полуинтервал от 4 до + бесконечности соответствует рисунку 3


2)

3) 4)


2. Какой промежуток соответствует неравенству -1

а) [-1; 8]; б) )[-1;8); в) (-1; 8]; г) (-1; 8).

III. Актуализация опорных знаний слайд2 (устно)

1. Разложить на множители.
а) x2 − 16, б) 6x + 8x2, в) x2 − 5x + 6, г) x2 + 6x + 9.

2. а) Назовите нули функции

1. f(х)= (х+3)(х-2)

2. f(х)=х2(х-8)

3. f(х)=(7-х)(х-4)2


1. (х+3)(х-2)≤0

2. х2(х-8)≥0

3. (7-х)(х-4)2 ≤0

б) Выберите те неравенства при решении которых методом интервалов можно встретить соседние интервалы с одинаковыми знаками.

Вопрос: Всегда ли чередуются знаки функции на промежутках? От чего это зависит?

Ответ: Нет, не всегда, если показатель множителя четный, то знак неравенства при переходе через корень этого множителя не меняется, если нечетный, то меняется.

III – решение задания на повторение.

Решаем одно из приведенных выше неравенств, где встречаются соседние интервалы одного знака.

IV. Актуализация опорных знаний слайд 3 (устно)

  1. Найти область определения функций

  2. y= ; y= 

х≥5 хЄR

IV – решение задания на повторение

Найти область определения функций y = . Находим область определения исходя из того что квадратный корень не определен из отрицательного числа

а знаменатель дроби не может равняться 0

т.е.  ≠ 0 т.е. х≠7, х≠ -7 Решим неравенство

  1. ≥0.

По свойству коэффициентов х=1, х=-2 корни трехчлена

Неравенство примет вид ≥0 или ≤0

или ≤0

Рассмотрим функцию

изобразим решение неравенства на числовой прямой (отметим нули, воспользуемся чередованием знаков функции)

+ - + - +

-7 -2 1 7

Ответ : (-7; -2 ] ∪ [1; 7)



V. Физкультминутка

Буратино потянулся,
Раз – нагнулся, два – нагнулся.
Руки в стороны развел,
Ключик видно не нашел.
Чтобы ключик нам достать,
Нужно на носочки встать.

VI. Актуализация опорных знаний (устно)


Вспомним определение модуля (слайд7).


  1. Раскроем знак модуля Iх-2I

  1. если х-2≥0, Iх-2I= х-2

  2. если х-2≤0, Iх-2I= -( х-2)

При каких значениях х, х-2≥0 (при х ≥2)

При каких значениях х, х-2≤0 (при х ≥2)

  1. Раскрыть знак модуля, используя определение модуля.

|х-3|



  1. |х-1| + |х-3| 4

Как вы думаете можно использовать метод интервалов для решения неравенств с модулем? Рассмотрим как используется метод интервалов для решения неравенств с модулем на примере данного неравенства.

VII. Ознакомление с новым материалом.

(Для объяснения используем презентацию)

VI. Самостоятельная работа или коррекция знаний. (Слайд 10)

Решить неравенство

  1. |х-1| + |х-3| 6-х

VIII. Итог урока.
  • Итак, какие неравенства вы научились сегодня решать?

  • Как решаются такие неравенства? Кто сможет рассказать алгоритм решения?

Домашнее задание:

Решить неравенства

  1. Y=

  2. (7-х)(х-4)2 ≤0

  3. |х-1| +2 |х-3| 5-х


Литература и интернет ресурсы:

1) А. Г. Мордкович «Алгебра и начала анализа 10-11», Мнемозина,2010;

2) В.А.Гусев, А.Г.Мордкович «Математика», Москва «Просвещение» 1988;

3) М. Л. Доброхотова, А. Н. Сафонов «Функция, её предел и производная», Москва
«Просвещение» 1969;

4) М. А. Родионов, В. П. Шершаков, Е. В. Марина «От простого к сложному. Основные
методы решения уравнений и неравенств» учебно-методическое пособие для учителей,
школьников и студентов; Пенза, 2001;

5) С.Н.Олехник, М.К.Потапов, П.И.Пасиченко «Нестандартные методы решения уравнений
и неравенств», Издательство московского университета, 1991.

6) И. Ф. Шарыгин. «Факультативный курс по математике. Решение задач», Москва,

«Просвещение», 1989.

7) М. К. Потапов, А. В. Шевкин «Алгебра и начала анализа» Дидактические материалы
для 11 класса, Москва, «Просвещение», 2007.



http://festival.1september.ru/articles/610856/ Урок алгебры по теме "Решение неравенств методом интервалов"

Презентация Трескиной В. Б.,учителя школы № 594 Московского района

г. Санкт-Петербурга «Решение уравнений и неравенств, содержащих модуль, методом интервалов».

http://festival.1september.ru/articles/640080/ План-конспект урока по математике. 9 класс

Мухометзянова Галина Геннадьевна, учитель математики.


5



Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 9 класс

Скачать
Урок "Метод интервалов" в 9 классе

Автор: Утина Лариса Сергеевна

Дата: 19.12.2014

Номер свидетельства: 145599

Похожие файлы

object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(120) "Разработка урока на тему;"Решение неравенств методом интервалов" "
    ["seo_title"] => string(73) "razrabotka-uroka-na-tiemu-rieshieniie-nieravienstv-mietodom-intiervalov-1"
    ["file_id"] => string(6) "186621"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1426395388"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(122) "Разработка урока на тему:" Решение неравенств методом  интервалов" "
    ["seo_title"] => string(73) "razrabotka-uroka-na-tiemu-rieshieniie-nieravienstv-mietodom-intiervalov-2"
    ["file_id"] => string(6) "188245"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1426644275"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(137) "Конспект урока математики на тему  "Решение неравенств методом интервалов""
    ["seo_title"] => string(74) "konspiekturokamatiematikinatiemurieshieniienieravienstvmietodomintiervalov"
    ["file_id"] => string(6) "274700"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1452434434"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(128) "Решение неравенств методом интервалов, конспект урока алгебры 9 класс"
    ["seo_title"] => string(69) "reshenie_neravenstv_metodom_intervalov_konspekt_uroka_algebry_9_klass"
    ["file_id"] => string(6) "502510"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1552251665"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(185) "Конспект занятия "Решение уравнений, содержащих неизвестное под знаком модуля, методом промежутков" "
    ["seo_title"] => string(116) "konspiekt-zaniatiia-rieshieniie-uravnienii-sodierzhashchikh-nieizviestnoie-pod-znakom-modulia-mietodom-promiezhutkov"
    ["file_id"] => string(6) "104156"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1402672337"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1750 руб.
2500 руб.
1450 руб.
2070 руб.
1360 руб.
1940 руб.
1750 руб.
2500 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства