Актуальность. В 2012 уч.г. продолжается эксперимент по введению единого государственного экзамена (ЕГЭ), но уже в следующем учебном году такой экзамен пройдет не в рамках эксперимента.
Государственная итоговая аттестация в форме ЕГЭ позволяет оценить общую математическую подготовку учащихся. Самый большой плюс ЕГЭ: повысилась ответственность учителя, ученика и родителя за получения свидетельства. Экзамен принимает не тот учитель, который преподавал у выпускника, т.е. идея независимой экспертизы математических знаний, заложенная в ЕГЭ, хороша. Не секрет, что ученики имеют разный уровень обученности. Поэтому подготовить выпускника даже на уровень А весьма проблематично.
В связи с этим целью нашего исследования является подготовка к ЕГЭ. Решение задач С2.
Задачи исследования:
Рассмотреть особенности подготовки к ЕГЭ по математике.
Выделить особенности в подготовке к ЕГЭ в решение задач С 2.
Привести примеры решения задач С 2.
Методы исследования: теоретический анализ литературы по теме исследования.
1.Актуальные вопросы подготовки к ЕГЭ
Подготовленность к чему-либо понимается нами как комплекс приобретенных знаний, навыков, умений, качеств, позволяющих успешно выполнять определенную деятельность. В готовности учащихся к сдаче экзамена в форме ЕГЭ выделяют следующие составляющие:
информационная готовность (информированность о правилах поведения на экзамене, информированность о правилах заполнения бланков и т.д.);
предметная готовность или содержательная (готовность по определенному предмету, умение решать тестовые задания);
психологическая готовность (состояние готовности – "настрой", внутренняя настроенность на определенное поведение, ориентированность на целесообразные действия, актуализация и приспособление возможностей личности для успешных действий в ситуации сдачи экзамена).
Ориентируясь на данные компоненты, мы относим к актуальным вопросам подготовки к ЕГЭ следующие:
организация информационной работы по подготовки учащихся к ЕГЭ;
мониторинг качества;
психологическая подготовка к ЕГЭ.[6]
Содержание информационной деятельности ОУ по вопросам ЕГЭ
В информационной деятельности образовательного учреждения по подготовке к ЕГЭ выделяют три направления: информационная работа с педагогами, с учащимися, с родителями.
Содержание информационной работы с педагогами.
1) Информирование учителей на производственных совещаниях 0
- нормативно-правовыми документами по ЕГЭ;
- о ходе подготовки к ЕГЭ в школе, в районе и области;
2) Включение в планы работы школьных методических объединений (ШМО) следующих вопросов:
- проведение пробных ЕГЭ, обсуждение результатов пробных ЕГЭ;
- творческая презентация опыта по подготовки учащихся к ЕГЭ (на методической или научной конференции в рамках школы);
- выработка совместных рекомендаций учителю-предметнику по стратегиям подготовки учащихся к ЕГЭ (с учетом психологических особенностей учащихся);
- психологические особенности 11-классников.
3) Педагогический совет "ЕГЭ – методические подходы к подготовке учащихся".
4) Направление учителей на районные и областные семинары и курсы по вопросам ЕГЭ.
Содержание информационной работы с учащимися.
1) Организация информационной работы в форме инструктажа учащихся:
- правила поведения на экзамене;
- правила заполнения бланков;
- расписание работы кабинета информатики (часы свободного доступа к ресурсам Интернет).
2) Информационный стенд для учащихся: нормативные документы, бланки, правила заполнения бланков, ресурсы Интернет по вопросам ЕГЭ.
3) Проведение занятий по тренировке заполнения бланков.
4) Пробные внутришкольные ЕГЭ по различным предметам.
5) В библиотеке:
- папка с материалами по ЕГЭ (нормативные документы, бланки по различным предметам, правила заполнения бланков, инструкции, ресурсы Интернет по вопросам ЕГЭ, перечень ресурсов библиотеки, рекомендации по подготовке к экзаменам);
- стенд с пособиями по ЕГЭ.[2]
Содержание информационной работы с родителями учащихся
1) Родительские собрания:
- информирование родителей о процедуре ЕГЭ, особенностях подготовки к тестовой форме сдачи экзаменов. Информирование о ресурсах Интернет;
- информирование о результатах пробного внутришкольного ЕГЭ (декабрь).
- пункт проведения экзамена, вопросы проведения пробного ЕГЭ в апреле.
2) Индивидуальное консультирование родителей (классные руководители, педагог-психолог).
Мониторинг качества образования
Особое внимание в процессе деятельности ОУ по подготовке учащихся к ЕГЭ занимает мониторинг качества обученности по предметам, которые учащихся будут сдавать в форме и по материалам ЕГЭ.
Мониторинг – отслеживание, диагностика, прогнозирование результатов деятельности, предупреждающие неправомерную оценку события, факта по данным единичного измерения (оценивания) (по: И. Ивлиева, В. Панасюк, Е. Чернышева). [1]
Мониторинг качества образования – "следящая" и в определенной степени контрольно-регулирующая система по отношению к качеству образования. Поэтому он одновременно есть, с одной стороны, подсистема системы управления качеством образования, а, с другой стороны информационная система, в которой циркулирует, собирается, обрабатывается, хранится, анализируется, представляется (визуализируется) информация о качестве образования (по: А.И. Субетто). [5]
Мониторинг качества образования – комплекс информационно-оценочных средств и структурированных процессов по поводу состояния качества системы образования (по: В.И. Воротилов, В.А. Исаев).
Система мероприятий по повышению качества подготовки учащихся к итоговой аттестации в форме ЕГЭ включает следующие направления деятельности:
- включение в планы работы деятельности школьных методических объединений вопросов подготовки к ЕГЭ, дополнительные семинары, курсы повышения квалификации;
- индивидуальные консультации учителей-предметников для учащихся;
- привлечение ресурсов дистанционного обучения и ресурсов Интернет для подготовки к ЕГЭ;
- широкий спектр элективных курсов, расширяющих программу базового обучения;
- психологическая поддержка учащихся, консультирование, выработка индивидуальных стратегий подготовки к ЕГЭ.
Мониторинг качества должен быть системным и комплексным. По нашему мнению, он должен включать следующие параметры: контроль текущих оценок по предметам, выбираемым учащимися в форме ЕГЭ, оценок по контрольным работам, оценок по самостоятельным работам, результаты пробного внутришкольного ЕГЭ. Такую работу проводит заместитель директора, ответственный за вопросы ЕГЭ, анализирует их, выносит на обсуждение на административные и производственные совещания, доводит до сведения родителей. Мониторинг обеспечивает возможность прогнозирования оценок на выпускном ЕГЭ.[5]
Психологическая подготовка к ЕГЭ
Психологическая подготовка учащихся может осуществляться в форме спецкурса (или элективного курса). Цели такого курса: отработка стратегии и тактики поведения в период подготовки к экзамену; обучение навыкам саморегуляции, самоконтроля, повышение уверенности в себе, в своих силах.
Методы проведения занятий разнообразны: групповая дискуссия, игровые методы, медитативные техники, анкетирование, мини-лекции, творческая работа, устные или письменные размышления по предложенной тематике. Содержание занятий должно ориентироваться на следующие вопросы: как подготовиться к экзаменам, поведение на экзамене, способы снятия нервно-психического напряжения, как противостоять стрессу.
Работа с учащимися проводится по желанию учащихся – со всем классом или выборочно.
Педагог-психолог может проводить индивидуальные консультации для учащихся по вопросам подготовки к экзаменам.
Опыт показывает, что вопросы подготовки к ЕГЭ решаемы, если деятельность базируется на принципах:
- системности (подготовка ведется последовательно, функционирует команда специалистов, подготавливающая учащихся по различным направлениям – информационно, предметно, психологически);
- гибкости (отслеживание изменений нормативно-правовой базы, накопление научно-методических материалов по вопросам ЕГЭ, индивидуальный подход к каждому учащемуся).
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«подготовка к ЕГЭ. Решение задач С2»
Подготовка к ЕГЭ. Решение задач С2
Содержание
Введение 3
1.Актуальные вопросы подготовки к ЕГЭ 4
2.Задача C2 в ЕГЭ 8
3.Традиционный метод решения 8
4.Метод координат в задаче C2 9
5.Примеры решения задач C2 в подготовке к ЕГЭ 11
Четырехугольная пирамида в задаче C2 15
Заключение 18
Список литературы 19
Введение
Актуальность. В 2012 уч.г. продолжается эксперимент по введению единого государственного экзамена (ЕГЭ), но уже в следующем учебном году такой экзамен пройдет не в рамках эксперимента.
Государственная итоговая аттестация в форме ЕГЭ позволяет оценить общую математическую подготовку учащихся. Самый большой плюс ЕГЭ: повысилась ответственность учителя, ученика и родителя за получения свидетельства. Экзамен принимает не тот учитель, который преподавал у выпускника, т.е. идея независимой экспертизы математических знаний, заложенная в ЕГЭ, хороша. Не секрет, что ученики имеют разный уровень обученности. Поэтому подготовить выпускника даже на уровень А весьма проблематично.
В связи с этим целью нашего исследования является подготовка к ЕГЭ. Решение задач С2.
Задачи исследования:
Рассмотреть особенности подготовки к ЕГЭ по математике.
Выделить особенности в подготовке к ЕГЭ в решение задач С 2.
Привести примеры решения задач С 2.
Методы исследования: теоретический анализ литературы по теме исследования.
1.Актуальные вопросы подготовки к ЕГЭ
Подготовленность к чему-либо понимается нами как комплекс приобретенных знаний, навыков, умений, качеств, позволяющих успешно выполнять определенную деятельность. В готовности учащихся к сдаче экзамена в форме ЕГЭ выделяют следующие составляющие:
информационная готовность (информированность о правилах поведения на экзамене, информированность о правилах заполнения бланков и т.д.);
предметная готовность или содержательная (готовность по определенному предмету, умение решать тестовые задания);
психологическая готовность (состояние готовности – "настрой", внутренняя настроенность на определенное поведение, ориентированность на целесообразные действия, актуализация и приспособление возможностей личности для успешных действий в ситуации сдачи экзамена).
Ориентируясь на данные компоненты, мы относим к актуальным вопросам подготовки к ЕГЭ следующие:
организация информационной работы по подготовки учащихся к ЕГЭ;
мониторинг качества;
психологическая подготовка к ЕГЭ.[6]
Содержание информационной деятельности ОУ по вопросам ЕГЭ
В информационной деятельности образовательного учреждения по подготовке к ЕГЭ выделяют три направления: информационная работа с педагогами, с учащимися, с родителями.
Содержание информационной работы с педагогами.
1) Информирование учителей на производственных совещаниях 0
- нормативно-правовыми документами по ЕГЭ;
- о ходе подготовки к ЕГЭ в школе, в районе и области;
2) Включение в планы работы школьных методических объединений (ШМО) следующих вопросов:
- проведение пробных ЕГЭ, обсуждение результатов пробных ЕГЭ;
- творческая презентация опыта по подготовки учащихся к ЕГЭ (на методической или научной конференции в рамках школы);
- выработка совместных рекомендаций учителю-предметнику по стратегиям подготовки учащихся к ЕГЭ (с учетом психологических особенностей учащихся);
- психологические особенности 11-классников.
3) Педагогический совет "ЕГЭ – методические подходы к подготовке учащихся".
4) Направление учителей на районные и областные семинары и курсы по вопросам ЕГЭ.
Содержание информационной работы с учащимися.
1) Организация информационной работы в форме инструктажа учащихся:
- правила поведения на экзамене;
- правила заполнения бланков;
- расписание работы кабинета информатики (часы свободного доступа к ресурсам Интернет).
2) Информационный стенд для учащихся: нормативные документы, бланки, правила заполнения бланков, ресурсы Интернет по вопросам ЕГЭ.
3) Проведение занятий по тренировке заполнения бланков.
4) Пробные внутришкольные ЕГЭ по различным предметам.
5) В библиотеке:
- папка с материалами по ЕГЭ (нормативные документы, бланки по различным предметам, правила заполнения бланков, инструкции, ресурсы Интернет по вопросам ЕГЭ, перечень ресурсов библиотеки, рекомендации по подготовке к экзаменам);
- стенд с пособиями по ЕГЭ.[2]
Содержание информационной работы с родителями учащихся
1) Родительские собрания:
- информирование родителей о процедуре ЕГЭ, особенностях подготовки к тестовой форме сдачи экзаменов. Информирование о ресурсах Интернет;
- информирование о результатах пробного внутришкольного ЕГЭ (декабрь).
- пункт проведения экзамена, вопросы проведения пробного ЕГЭ в апреле.
2) Индивидуальное консультирование родителей (классные руководители, педагог-психолог).
Мониторинг качества образования
Особое внимание в процессе деятельности ОУ по подготовке учащихся к ЕГЭ занимает мониторинг качества обученности по предметам, которые учащихся будут сдавать в форме и по материалам ЕГЭ.
Мониторинг–отслеживание, диагностика, прогнозирование результатов деятельности, предупреждающие неправомерную оценку события, факта по данным единичного измерения (оценивания) (по: И. Ивлиева, В. Панасюк, Е. Чернышева). [1]
Мониторинг качества образования– "следящая" и в определенной степени контрольно-регулирующая система по отношению к качеству образования. Поэтому он одновременно есть, с одной стороны, подсистема системы управления качеством образования, а, с другой стороны информационная система, в которой циркулирует, собирается, обрабатывается, хранится, анализируется, представляется (визуализируется) информация о качестве образования (по: А.И. Субетто). [5]
Мониторинг качества образования – комплекс информационно-оценочных средств и структурированных процессов по поводу состояния качества системы образования (по: В.И. Воротилов, В.А. Исаев).
Система мероприятий по повышению качества подготовки учащихся к итоговой аттестации в форме ЕГЭ включает следующие направления деятельности:
- включение в планы работы деятельности школьных методических объединений вопросов подготовки к ЕГЭ, дополнительные семинары, курсы повышения квалификации;
- индивидуальные консультации учителей-предметников для учащихся;
- привлечение ресурсов дистанционного обучения и ресурсов Интернет для подготовки к ЕГЭ;
- широкий спектр элективных курсов, расширяющих программу базового обучения;
- психологическая поддержка учащихся, консультирование, выработка индивидуальных стратегий подготовки к ЕГЭ.
Мониторинг качества должен быть системным и комплексным. По нашему мнению, он должен включать следующие параметры: контроль текущих оценок по предметам, выбираемым учащимися в форме ЕГЭ, оценок по контрольным работам, оценок по самостоятельным работам, результаты пробного внутришкольного ЕГЭ. Такую работу проводит заместитель директора, ответственный за вопросы ЕГЭ, анализирует их, выносит на обсуждение на административные и производственные совещания, доводит до сведения родителей. Мониторинг обеспечивает возможность прогнозирования оценок на выпускном ЕГЭ.[5]
Психологическая подготовка к ЕГЭ
Психологическая подготовка учащихся может осуществляться в форме спецкурса (или элективного курса). Цели такого курса: отработка стратегии и тактики поведения в период подготовки к экзамену; обучение навыкам саморегуляции, самоконтроля, повышение уверенности в себе, в своих силах.
Методы проведения занятий разнообразны: групповая дискуссия, игровые методы, медитативные техники, анкетирование, мини-лекции, творческая работа, устные или письменные размышления по предложенной тематике. Содержание занятий должно ориентироваться на следующие вопросы: как подготовиться к экзаменам, поведение на экзамене, способы снятия нервно-психического напряжения, как противостоять стрессу.
Работа с учащимися проводится по желанию учащихся – со всем классом или выборочно.
Педагог-психолог может проводить индивидуальные консультации для учащихся по вопросам подготовки к экзаменам.
Опыт показывает, что вопросы подготовки к ЕГЭ решаемы, если деятельность базируется на принципах:
- системности (подготовка ведется последовательно, функционирует команда специалистов, подготавливающая учащихся по различным направлениям – информационно, предметно, психологически);
- гибкости (отслеживание изменений нормативно-правовой базы, накопление научно-методических материалов по вопросам ЕГЭ, индивидуальный подход к каждому учащемуся).
2.Задача C2 в ЕГЭ
В задаче C2 рассматриваются многогранники, на основе которых, как правило, нужно найти одну из следующих величин:
Угол между скрещивающимися прямыми — это угол между двумя прямыми, которые пересекаются в одной точке и параллельны данным прямым.
Угол между прямой и плоскостью — это угол между самой прямой и ее проекцией на данную плоскость.
Угол между двумя плоскостями — это угол между прямыми, которые лежат в данных плоскостях и перпендикулярны линии пересечения этих плоскостей.
Прямые всегда задаются двумя точками на поверхности или внутри многогранника, а плоскости — тремя. Сами многогранники всегда задаются длинами своих граней.
3.Традиционный метод решения
В школьном курсе стереометрии упор делается на дополнительные построения, которые позволяют выделить искомый угол, а затем рассчитать его величину.
Здесь уместно вспомнить задачи на построение сечений многогранников, которые рассматриваются в 10 классе и у многих вызывают трудности. Существование формального алгоритма для таких построений совершенно не облегчает задачу, поскольку каждый случай достаточно уникален, а любая систематизация лишь усложняют процесс.
Именно поэтому задача C2 оценивается в два балла. Первый балл дается за правильные построения, а второй — за правильные вычисления и собственно ответ.
Преимущества традиционного решения:
Высокая наглядность дополнительных построений, которые подробно изучаются на уроках геометрии в 10-11 классах;
При правильном подходе значительно сокращается объем вычислений.
Недостатки:
Необходимо знать большое количество формул из стереометрии и планиметрии;
Дополнительные построения каждый раз приходится придумывать «с нуля». И это может оказаться серьезной проблемой даже для хорошо подготовленных учеников.
Впрочем, если у читателя хорошее стереометрическое воображение, проблем с дополнительными построениями не возникнет. Остальным предлагаю отказаться от традиционного геометрического метода и рассмотреть более эффективный алгебраический подход.
4.Метод координат в задаче C2
Метод координат в пространстве — о чем, собственно, идет речь. Работать будем только с векторами. Прямые и плоскости тоже заменяются векторами, поэтому никаких проблем не возникнет.
Введение системы координат для многогранников. Дело в том, что в настоящей задаче C2 никаких координат не будет. Их надо вводить самостоятельно.
Вычисление угла между двумя прямыми. А это уже решение конкретных задач C2.
Вычисление угла между прямой и плоскостью. Во многих задачах C2 встречаются плоскости. Для любой прямой можно рассчитать синус угла между плоскостью и этой прямой. Именно синус — и только затем косинус!
Вычисление угла между двумя плоскостями. Заменяем плоскости нормальными векторами и считаем угол между последними. Косинус угла между векторами — это и косинус угла между плоскостями.
Дополнительные соображения — как можно упростить вычисления и грамотно их оформить. Все-таки C2 — это не B2, и здесь требуется привести полноценно решение задачи.
Четырехугольная пирамида в задаче C2
Пирамида — самый нелюбимый многогранник в задаче C2. Потому что ее координаты находятся труднее всего. И если точки основания еще как-то рассчитываются, то вершины пирамиды — настоящий ад. Сегодня мы разберемся с четырехугольной пирамидой, а в следующий раз — с треугольной.
Дополнительные соображения
Что можно сделать, когда все уже сделано? Правильно: можно попробовать упростить. А поскольку метод координат простотой и маленькими объемами вычислений не страдает, некоторая оптимизация здесь просто необходима.
Угол между двумя прямыми
Чаще всего в задаче C2 требуется найти угол именно между двумя прямыми. Иногда точки подобраны так, что вычислить угол между прямыми иначе как с помощью метода координат будет затруднительно. Во всех случаях сложность вычислений сильно зависит от того, какая фигура дается в задаче. Самый простой вариант — это куб и точки на его гранях. Чуть сложнее обстоит дело с трехгранной призмой.
Введение системы координат
В чистом виде метод координат встречается редко. Как правило, сначала требуется ввести систему координат, отыскать нужные точки — и только затем находить ответ. Для каждого многогранника в задаче C2 существует оптимальный вариант введения системы координат, который повышает наглядность самого решения и значительно сокращает общий объем вычислений.
Метод координат в пространстве
Метод координат — это только на первый взгляд сложно. Координаты, векторы, километровые вычисления... А в результате получается намного быстрее и проще, чем стандартные приемы. В задаче C2 метод координат работает на полную силу, и многие специалисты по ЕГЭ признают, что координатный подход — самый оптимальный способ нахождения ответа.
5.Примеры решения задач C2 в подготовке к ЕГЭ
Угол между двумя прямыми
Угол между двумя прямыми равен углу между их направляющими векторами. Таким образом, если вам удастся найти координаты направляющих векторов a = (x1; y1; z1) и b = (x2; y2; z2), то сможете найти угол. Точнее, косинус угла по формуле:
Посмотрим, как эта формула работает на конкретных примерах:
Задача. В кубе ABCDA1B1C1D1 отмечены точки E и F — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AE и BF.
Решение. Поскольку ребро куба не указано, положим AB = 1. Введем стандартную систему координат: начало в точке A, оси x, y, z направим вдоль AB, AD и AA1 соответственно. Единичный отрезок равен AB = 1. Теперь найдем координаты направляющих векторов для наших прямых.
Найдем координаты вектора AE. Для этого нам потребуются точки A = (0; 0; 0) и E = (0,5; 0; 1). Поскольку точка E — середина отрезка A1B1, ее координаты равны среднему арифметическому координат концов. Заметим, что начало вектора AE совпадает с началом координат, поэтому AE = (0,5; 0; 1).
Теперь разберемся с вектором BF. Аналогично, разбираем точки B = (1; 0; 0) и F = (1; 0,5; 1), т.к. F — середина отрезка B1C1. Имеем: BF = (1 − 1; 0,5 − 0; 1 − 0) = (0; 0,5; 1).
Итак, направляющие векторы готовы. Косинус угла между прямыми — это косинус угла между направляющими векторами, поэтому имеем:
Ответ: arccos 0,8
Задача. В правильной трехгранной призме ABCA1B1C1, все ребра которой равны 1, отмечены точки D и E — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AD и BE.
Решение. Введем стандартную систему координат: начало координат в точке A, ось x направим вдоль AB, z — вдоль AA1. Ось y направим так, чтобы плоскость OXY совпадала с плоскостью ABC. Единичный отрезок равен AB = 1. Найдем координаты направляющих векторов для искомых прямых.
Для начала найдем координаты вектора AD. Рассмотрим точки: A = (0; 0; 0) и D = (0,5; 0; 1), т.к. D — середина отрезка A1B1. Поскольку начало вектора AD совпадает с началом координат, получаем AD = (0,5; 0; 1).
Теперь найдем координаты вектора BE. Точка B = (1; 0; 0) считается легко. С точкой E — серединой отрезка C1B1 — чуть сложнее. Имеем:
Осталось найти косинус угла:
Ответ: arccos 0,7
Задача. В правильной шестигранной призме ABCDEFA1B1C1D1E1F1, все ребра которой равны 1, отмечены точки K и L — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AK и BL.
Решение. Введем стандартную для призмы систему координат: начало координат поместим в центр нижнего основания, ось x направим вдоль FC, ось y — через середины отрезков AB и DE, а ось z — вертикально вверх. Единичный отрезок снова равен AB = 1. Выпишем координаты интересующих нас точек:
Точки K и L — середины отрезков A1B1 и B1C1 соответственно, поэтому их координаты находятся через среднее арифметическое. Зная точки, найдем координаты направляющих векторов AK и BL:
Теперь найдем косинус угла:
Ответ: arccos 0,9
Задача. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, отмечены точки E и F — середины сторон SB и SC соответственно. Найдите угол между прямыми AE и BF.
Решение. Введем стандартную систему координат: начало в точке A, оси x и y направим вдоль AB и AD соответственно, а ось z направим вертикально вверх. Единичный отрезок равен AB = 1.
Точки E и F — середины отрезков SB и SC соответственно, поэтому их координаты находятся как среднее арифметическое концов. Выпишем координаты интересующих нас точек: A = (0; 0; 0); B = (1; 0; 0)
Зная точки, найдем координаты направляющих векторов AE и BF:
Координаты вектора AE совпадают с координатами точки E, поскольку точка A — начало координат. Осталось найти косинус угла:
Четырехугольная пирамида в задаче C2
Решая задачу C2 методом координат, многие ученики сталкиваются с одной и той же проблемой. Они не могут рассчитать координаты точек, входящих в формулу скалярного произведения. Наибольшие трудности вызывают пирамиды. И если точки основания считаются более-менее нормально, то вершины — настоящий ад.
Есть еще треугольная пирамида (она же — тетраэдр).
Для начала вспомним определение:
Определение
Правильная пирамида — это такая пирамида, у которой:
В основании лежит правильный многоугольник: треугольник, квадрат и т.д.;
Высота, проведенная к основанию, проходит через его центр.
В частности, основанием четырехугольной пирамиды является квадрат. Прямо как у Хеопса, только чуть поменьше.
Ниже приведены расчеты для пирамиды, у которой все ребра равны 1. Если в вашей задаче это не так, выкладки не меняются — просто числа будут другими.
Заключение
ЕГЭ – уже не новая форма проверки знаний ученика. Проверяя эти знания, мы довольно часто приходим к неутешительным результатам. Эти результаты не радуют чаще всего не только учителя, но и самого ученика. И это бывает потому, что ученик не владеет знаниями даже на базовом уровне.
Значит учить и научить так, чтобы, по возможности, каждый получил “зачет” на экзамене, мы должны всех, кто пришел учиться в зависимости от уровня их знаний и способностей, а также потребностей каждого отдельно взятого ученика.
Задача учителя – научить всех сидящих перед ним учеников с учетом их возможностей и способностей. Это очень трудная и ответственная работа для каждого учителя, работающего в выпускном классе.
Список литературы
Единственные реальные варианты заданий для подготовки к единому государственному экзамену. ЕГЭ – 2007, 2008. Математика/ А.Г.Клово. – М.: Федеральный центр тестирования, 2007, 2008.
Математика. Подготовка к ЕГЭ – 2008. Вступительные испытания. Под редакцией Ф.Ф. Лысенко. – Ростов-на Дону: Легион, 2007.
В.В. Кочагин, М.Н.Кочагина. Тестовые задания к основным учебникам. Рабочая тетрадь. 9 класс. – М. Эксмо, 2008.
Алгебра и начала анализа: учеб. Для 10 кл. общеобразоват.учреждений: базовый и профил. уровни (С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин). – 6-е изд. – М.: Просвещение, 2007.
Алгебра и начала анализа: учеб. Для 11 кл. общеобразоват.учреждений: базовый и профил. уровни (С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин). – 6-е изд. – М.: Просвещение, 2007.
Математика. ЕГЭ – 2008. Тематические тесты. Часть I (А 1 – А10, В 1 – 3). Под редакцией Ф.Ф. Лысенко. – Ростов-на-Дону: Легион, 2008.
Математика. ЕГЭ – 2008. Тематические тесты. Часть II (В 4 – 11, С 1, С 2). Под редакцией Ф.Ф. Лысенко. – Ростов-на-Дону: Легион, 2008.