Білімділік: Ең кіші ортақ еселікті бекіту. Сандардың бөлінгіштігін жалпылау. Сандардың бөлінгіштігіне берілген есептерді алгебралық тәсілдермен шығару дағдыларын қалыптастыру. Матемаматикалық сөйлеу мәдениетіне үйрету.
Тәрбиелік: Творчестволық құлшынысқа, өз ойын еркін дәлелдеп жеткізе білуге тәрбиелеу.
Сабақтың құрылымы:
Ұйымдастыру кезеңі (пәнді үйренуге мотивация беру, сабақтың мақсаты мен құрылымымен таныстыру).
Өтілген сабақты еске түсіру.
Өтілген материалдарды бекіту.
Сабақты қорытындылау және оқушыларды бағалау.
Үйге тапсырма.
Сабақта қолданылатын құралдар: оқулық, интерактивті тақта, таратпа материалдар, презентация.
Сабақтың барысы:
І. Ұйымдастыру кезеңі (пәнді үйренуге мотивация беру, сабақтың мақсаты мен құрылымымен таныстыру).
Мұғалім: Өткен сабақта біздер «Еі кіші ортақ еселік» ұғымымен танысқан болатынбыз. Бүгінгі сабағымыз «Ең кіші ортақ еселікті» бекіту сабағы. Сабағымыздың құрылымы сандардың бөлінгіштігін, ең үлкен ортақ бөлгіш, ең кіші ортақ еселік туралы алған теориялық білімдерімізді еске түсіру, оларды есептер шығару барысында қолдану, сандар және сандардың бөлінгіштігі туралы білімдерімізді қолданып логикалық, олимпиадалық есептер шығару.
Бүгінгі сабағымыз өз ерекшелігі бар сабақ. Өйткені біздер «Ең кіші ортақ еселік» еліне саяхатқа шығамыз. Саяхат барысында бірнеше аялдамаларға тоқтаймыз. Ол аялдамаларда білімдерімізді, шапшаңдығымызды, тапқырлығымызды көрсетіп, саяхатымызды жалғастыруға мүмкіндік аламыз. Әуелі саяхатқа дайындығымызды тексерейік. Өткен сабақта үйге берілген тапсырмалардан сұрақтарың бар ма? (Үй тапсырмасының жауаптарын оқушылар интерактивті тақтадан тексереді). Енді саяхатымызды бастайық.
ІІ. Жеке жұмыс.
Бірінші аялдама – «Ауызша сұрақтар» аялдамасы. Оқушылардың теориялық білімдерін тексеру мақсатында ауызша сұрақтар беріледі:
Қандай санды берілген натурал санның бөлгіші деп атайды?
Натурал санның ең кіші бөлгіші?
Натурал санның ең үлкен бөлгіші?
Қандай санды берілген натурал санға еселік деп атайды?
Берілген натурал санның ең кіші еселігі?
Берілген натурал санға еселік санды қалай табады?
Қосындының берілген натурал санға бөлгіштігін қалай білеміз?
Қандай жағдайда көбейтінді берілген натурал санға бөлінеді?
Қандай цифрларды жұп цифрлар деп атайды?
Қандай цифрларды тақ цифрлар деп атайды?
Қандай сандар 2-ге бөлінеді?
Қандай сандар 5-ке бөлінеді?
Қандай сандар 10-ға бөлінеді?
Қандай сандар 3-ке бөлінеді?
Қандай сандар 9-ға бөлінеді?
Жай сандар деп қандай сандарды айтады?
Құрама сандар деп қандай сандарды айтады?
1 саны қандай сан?
Құрама сандарды жай көбейткіштерге жіктеу дегеніміз не?
Құрама сандарды жай көбейткіштерге қалай жіктейміз?
Берілген сандардың ең үлкен ортақ бөлгіші деп қандай санды айтады?
Өзара жай сандар деп қандай сандарды айтады?
Берілген натурал сандардың ең кіші ортақ еселігі деп қандай санды айтады?
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Ең кіші ортақ еселік 5 сынып»
Сабақтың тақырыбы: Ең кіші ортақ еселік
5 А сынып
Дамытушылық: Сандар туралы білімдерін дамыту.
Білімділік: Ең кіші ортақ еселікті бекіту. Сандардың бөлінгіштігін жалпылау. Сандардың бөлінгіштігіне берілген есептерді алгебралық тәсілдермен шығару дағдыларын қалыптастыру. Матемаматикалық сөйлеу мәдениетіне үйрету.
Тәрбиелік: Творчестволық құлшынысқа, өз ойын еркін дәлелдеп жеткізе білуге тәрбиелеу.
Сабақтың құрылымы:
Ұйымдастыру кезеңі (пәнді үйренуге мотивация беру, сабақтың мақсаты мен құрылымымен таныстыру).
Өтілген сабақты еске түсіру.
Өтілген материалдарды бекіту.
Сабақты қорытындылау және оқушыларды бағалау.
Үйге тапсырма.
Сабақта қолданылатын құралдар: оқулық, интерактивті тақта, таратпа материалдар, презентация.
Сабақтың барысы:
І. Ұйымдастыру кезеңі (пәнді үйренуге мотивация беру, сабақтың мақсаты мен құрылымымен таныстыру).
Мұғалім: Өткен сабақта біздер «Еі кіші ортақ еселік» ұғымымен танысқан болатынбыз. Бүгінгі сабағымыз «Ең кіші ортақ еселікті» бекіту сабағы. Сабағымыздың құрылымы сандардың бөлінгіштігін, ең үлкен ортақ бөлгіш, ең кіші ортақ еселік туралы алған теориялық білімдерімізді еске түсіру, оларды есептер шығару барысында қолдану, сандар және сандардың бөлінгіштігі туралы білімдерімізді қолданып логикалық, олимпиадалық есептер шығару.
Бүгінгі сабағымыз өз ерекшелігі бар сабақ. Өйткені біздер «Ең кіші ортақ еселік» еліне саяхатқа шығамыз. Саяхат барысында бірнеше аялдамаларға тоқтаймыз. Ол аялдамаларда білімдерімізді, шапшаңдығымызды, тапқырлығымызды көрсетіп, саяхатымызды жалғастыруға мүмкіндік аламыз. Әуелі саяхатқа дайындығымызды тексерейік. Өткен сабақта үйге берілген тапсырмалардан сұрақтарың бар ма? (Үй тапсырмасының жауаптарын оқушылар интерактивті тақтадан тексереді). Енді саяхатымызды бастайық.
ІІ. Жеке жұмыс.
Бірінші аялдама – «Ауызша сұрақтар» аялдамасы. Оқушылардың теориялық білімдерін тексеру мақсатында ауызша сұрақтар беріледі:
Қандай санды берілген натурал санның бөлгіші деп атайды?
Натурал санның ең кіші бөлгіші?
Натурал санның ең үлкен бөлгіші?
Қандай санды берілген натурал санға еселік деп атайды?
Берілген натурал санның ең кіші еселігі?
Берілген натурал санға еселік санды қалай табады?
Қосындының берілген натурал санға бөлгіштігін қалай білеміз?
Қандай жағдайда көбейтінді берілген натурал санға бөлінеді?
Қандай цифрларды жұп цифрлар деп атайды?
Қандай цифрларды тақ цифрлар деп атайды?
Қандай сандар 2-ге бөлінеді?
Қандай сандар 5-ке бөлінеді?
Қандай сандар 10-ға бөлінеді?
Қандай сандар 3-ке бөлінеді?
Қандай сандар 9-ға бөлінеді?
Жай сандар деп қандай сандарды айтады?
Құрама сандар деп қандай сандарды айтады?
1 саны қандай сан?
Құрама сандарды жай көбейткіштерге жіктеу дегеніміз не?
Құрама сандарды жай көбейткіштерге қалай жіктейміз?
Берілген сандардың ең үлкен ортақ бөлгіші деп қандай санды айтады?
Өзара жай сандар деп қандай сандарды айтады?
Берілген натурал сандардың ең кіші ортақ еселігі деп қандай санды айтады?
Оқушылардың формулалардың мағынасын түсініп, орынды қолдана білулеріне ықпал ету мақсатында «Формулалар әлеміне саяхат» аялдамасы алынады.
Мұғалім: Екінші аялдама – «Формулалар әлеміне саяхат» аялдамасы. Мына формулалардың мағынасын түсіндіріңдер:
(a+b):c=a:c+b:c
(a-b):c=a:c-b:c
(a*b):c=(a:c)*b
(a*b):c=a*(b:c)
a:(b*c)=(a:b):c
Оқушылардың есептеу жылдамдықтарын арттыру мақсатында «Ауызша есептеулер аялдамасы» алынды.
Мұғалім: Үшінші аялдама – «Ауызша есептеулер» аялдамасы. Бұл аялдамада ауызша есептеуге есептер беріледі:
ІІІ. Оқушылардың өткен сабақты игеру деңгейлерін тексеру және оларды жан-жақты дамыту мақсатында «Тапқырлық» аялдамасы алынды.
Топтық жұмыс: Мұғалім: Төртінші аялдама – «Тапқырлық» аялдамасы. Бұл аялдамада есеп берілген сол есептерді дұрыс шешу арқылы ізделінді сөзді табу керек.
Есеп: Жер бетінде жаздың ауа райын қатесіз анықтауға мүмкіндік беретін құстар өмір сүреді. Бұл құстар ұяларын конус тәріздес етіп соғады: егер ұяларын биік етіп соқса – жаздың жаңбырлы болатынын; аласа етіп соқса – жаздың құрғақ болатынын білдіреді. Берілген есептерді дұрыс шығарсақ сол құстың аты шығады.
№
Тапсырмалар
Жауабы
Сәйкес келетін әріп
1
ЕҮОБ(102;238)
25
И
2
5 пен 7 цифрларын пайдаланып неше үш таңбалы сан жазуға болады? Оларды жазып көрсет.
1
Н
3
Асқар 15 сәбізді неше ең көп дегенқоянға тең бөліп бере алады?
6
Л
4
ЕКОЕ(72,180)
15
А
5
Мен бір сан ойладым. Оны 3-ке көбейтіп, нәтижесіне 19-ды қосқанда, қосынды 94-ке тең болды. Мен қандай сан ойладым?
34
ф
6
3-ке еселік сандардың ең кішісін тап: 6*233
3
О
7
Қыры 12 cм кубтың ішіне қыры 3 см неше кубты орналастыруға болады?
360
М
8
Екі санның көбейтіндісі бірінші көбейткіштен 3 есе артық. Екінші көбейткішті тап.
64
Г
Оқушылар есепті дұрыс шығарса төмендегі сөз шығуы тиісті:
Оқушылардың теориялық білімдерін есептер шығару барысында қолдана алу деңгейін тексеру мақсатында «Қате тұжырымды анықтау» аялдамасы алынды.
Мұғалім: Төртінші аялдама – «Қате тұжырымды анықтау» аялдамасы. Бұл аялдамада тұжырым ақиқат па, әлде жалған ба, соны анықтаулары керек және де ақиқат тұжырым 1 санымен, жалған тұжырым 0 санымен өрнектеледі.
Егер сан 3-ке бөлінсе, ол сан 9-ға да бөлінеді.
1 cаны жай санға да, құрама санға да жатпайды.
Барлық жай сандар тақ.
120005 құрама сан.
147 адамды үш командаға тең бөлуге болады.
Егер қосылғыштардың біреуі берілген санға бөлінсе, қосынды да сол санға бөлінеді.
Егер көбейткіштердің біреуі берілген санға бөлінсе, көбейтінді де сол санға бөлінеді.
Жауабы: 0101101
Оқушылардың ең үлкен ортақ бөлгіш пен ең кіші ортақ еселік тақырыптарына берілген мәтін есептерді тануға және оны шығаруға үйрету мақсатында «Танымдық» аялдамасы алынды.
Топтық жұмыс.
Мұғалім: Бесінші аялдамамыз – «Танымдық» аялдамасы. Бұл аялдамада ең үлкен ортақ бөлгіш пен ең кіші ортақ еселікке есеп берілген Сол есептерді тани білу және шығару.
1 есеп:Ұзындығы 48 cм, ал ені 40 см болатын тіктөртбұрыш тәріздес картонды ешқандай қиынды қалмайтындай етіп қабырғасы ең үлкен болатындай қанша бірдей квадраттарға бөлуге болады?
2 есеп: Базарға әкелінген қарбыздарды он-оннан санасақ та, он екі - он екіден санасақта ешқандай қарбыз артық қалмайды. Базарға ең аз дегенде неше қарбыз әкелінді?
Оқушылардың сандар туралы білімдерін және логикасын дамыту мақсатында «Логика» аялдамасы алынады.
Олимпиадалық есептер:
Мұғалім: Алтыншы аялдама: «Логика» аялдамасы. Бұл аялдамада логикалық және олимпиадалық есептер шығарамыз.
Бір кісі кадь сусынын 14 күн, ал әйелімен екеуі осы сусынды 10 күн ішеді. Ал әйелі осы сусынды өзі ғана ішсе, неше күн ішеді?
Евклид алгоритмін қолданып сандардың ең үлкен ортақ бөлгішін табыңдар:
ЕҮОБ(455; 312)
5 санынан басталып, әр түрлі цифрлардан құралған 9-ға бөлінетін алты таңбалы санның ең кішісін табыңдар.
Алты таңбалы санның бірінші цифры төртіншімен сәйкес, екіншісі бесіншімен сәйкес, ал үшіншісі алтыншымен сәйкес келеді. Осы сандардың 7-ге, 11-ге және 13-ке бөлінетінін дәлелдеңдер.
1000 метрлік жүгіруден бастапқыда Арман алдында, екінші Болат, ал үшінші болып Мерей жүгіріп келетін. Біраз уақыт өткен соң Арман мен Болат орындарын 6 рет ауыстырды да, Болат пен Мерей – 5 рет, Арман мен Мерей – 4 рет ауыстырды. Спортшылардың қайсысы қалай межеленген жерге жүгіріп жетті?
Мектепшілік математика олимпиадасына 5 сыныптар бойынша 9 оқушы қатысты. Оларға он тапсырма берілді. Әрбір дұрыс шығарған есептері үшін 2 ұпай жинайды да, әрбір дұрыс шығармаған немесе тіпті шығармаған есептері үшін жинаған ұпайынан 1 ұпай шегеріледі. Осы оқушылардың ішінде екеуінің ұпайы бірдей болатын кемінде екі оқушы табылатынын дәлелде. (Егер жинаған ұпайы азайтылатын ұпайынан аз болса, жалпы ұпай санын нөл деп есептеледі).
ІҮ. Cабақты қорытындылау, рефлексия.
Мұғалім: Саяхат барысында нені еске түсірдік?
Оқушылар: Ең үлкен ортақ бөлгішті табуды, ең кіші ортақ еселікті табуды және сандардың бөлінгіштігін еске түсірдік.
Мұғалім: Неге үйрендік?
Оқушылар: Ең үлкен ортақ бөлгіш пен ең кіші ортақ еселікке берілген мәтін есептерді тани білу мен шығара білуге үйрендік. Жаңа тәсіл Евклид алгоритмін қолданып ең үлкен ортақ бөлгішті табуға, әсіресе «Фламинго» құсына берілген танымдылық есеп ерекше ұнады.