Содержанием темы являются введение понятия прямоугольного параллелепипеда и его составляющих элементов, а так же знакомство с названиями этих элементов и расположением их на поверхности прямоугольного параллелепипеда и их свойствами, а так же знакомство с частным видом прямоугольного параллелепипеда – кубом и также свойствами элементов куба. На уроке будет происходить повторение знаний предыдущих тем: периметр прямоугольника и площадь прямоугольника. На уроке учащиеся познакомятся с построением прямоугольного параллелепипеда на плоскости. При решении задач учащиеся будут применять знания на применение арифметических действий с целыми числами и десятичными дробями.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Прямоугольный параллелепипед»
Тема: «Прямоугольный параллелепипед»
Тип урока. Урок изучения нового материала.
Характеристика темыурока.
Содержанием темы являются введение понятия прямоугольного параллелепипеда и его составляющих элементов, а так же знакомство с названиями этих элементов и расположением их на поверхности прямоугольного параллелепипеда и их свойствами, а так же знакомство с частным видом прямоугольного параллелепипеда – кубом и также свойствами элементов куба. На уроке будет происходить повторение знаний предыдущих тем: периметр прямоугольника и площадь прямоугольника. На уроке учащиеся познакомятся с построением прямоугольного параллелепипеда на плоскости. При решении задач учащиеся будут применять знания на применение арифметических действий с целыми числами и десятичными дробями.
Целиурока:
Наглядно познакомить учащихся с прямоугольным параллелепипедом и научить отличать зрительно от других пространственных тел.
Познакомить учащихся с названиями составных частей прямоугольного параллелепипеда.
Рассмотреть свойства рёбер, углов и граней прямоугольного параллелепипеда.
Познакомить с частным видом прямоугольного параллелепипеда –кубом и свойствами его составных частей и с отличием от свойств составных частей прямоугольного параллелепипеда.
Решить задачи на нахождение периметров и площадей частей прямоугольного параллелепипеда и куба.
Формировать действия, адекватные понятию прямоугольного параллелепипеда, куба, их составных частей и нахождению их периметров и их площадей .
Оборудование урока: повседневные рабочие тетради в клеточку, авторучки, карандаши(простые и цветные), фломастеры разноцветные, линейки, компьютеры (ноутбуки), модели демонстрационные: различных видов прямоугольных параллелепипедов, призм, цилиндров, конусов, звездчатых тел, шаров и сфер, экран, плакаты с изображением прямоугольных параллелепипедов на различных стадиях построения, карточки с формулами периметра прямоугольника и квадрата, и площади прямоугольника и квадрата, несколько пар равных фигур (многоугольники и другие геометрические фигуры: треугольник, прямоугольник, квадрат, круг, эллипс), набор листов в клетку с отмеченными разноцветными точками для проведения пространственного чертежа прямоугольного параллелепипеда.
ХОД УРОКА
I. Организационный момент
Добрый день, дорогие путешественники в страну знаний!
Чтобы начать сегодняшний урок, мне хотелось бы узнать, готовы ли вы к уроку, какое у вас настроение, есть ли у вас желание узнать что-то новое на сегодняшнем уроке?
Как сказал древнегреческий философ Саади: “Ученик, который учится без желания - это птица без крыльев”.
И мне бы хотелось, чтобы было у вас желание учиться, узнавать что-то новое, неопознанное не только на сегодняшнем уроке, а всегда и только в этом случае своими “крыльями” будете “взлетать” все выше и выше.
А также мне очень хочется обратиться к словам известного российского математика А.И. Мордковича: “Кто с детских лет занимается математикой, этот развивает внимание, тренирует свой мозг, свою волю, воспитывает в себе настойчивость и упорство в достижении цели”.
Именно это нам потребуется на сегодняшнем уроке: внимание, настойчивость и упорство, чтобы достичь поставленных целей.
II. Актуализация знаний.
1. Фронтальный опрос по предыдущей теме.
Вопросы:
– Верно ли, что равные фигуры имеют неравные площади? (Нет) – Как можно это доказать? (Путём наложения одинаковых фигур друг на друга и они совпадут). – Верно ли, что если фигура разбита на части, то площадь всей фигуры равна сумме площадей её частей? (Да). – Верно ли, что если у прямоугольника его длина 3 см, а ширина 2 см, то его площадь равна 10 квадратных сантиметров? (Нет). – Почему? Как найти правильный ответ? (3 х 2 = 6) – Сказать правило нахождения площади прямоугольника. (Показываются после формулировки правила весь класс с места карточку с формулой) – Сказать правило нахождения периметра прямоугольника. (После правила все учащиеся показывают карточки с формулой). – Сказать правило нахождения периметра и площади квадрата. (После того, как будут сказаны формулы, ученики с места показывают карточки с формулами).
2. Вывешивается плакат с формулами периметров (P) и площадей (S) прямоугольника (со сторонами равными a и b) и квадрата (со сторонами равными a).
Прямоугольник
Квадрат
Р = 2 (а + в)
Р = 4а
S = a. b
S = a . a
III. Изучение нового материала
В действительности мы часто встречаем предметы, имеющие похожую форму. Они могут быть сделаны из разного материала и окрашены в разные цвета, но по форме они напоминают друг друга.
-Приведите примеры таких предметов.(Например: чемодан, шкаф, телевизор)
Эти предметы имеют похожую форму. Правда они отличаются мелкими деталями.
-Какими деталями они отличаются?(у чемодана есть ручка, у шкафа – двери).
Но если не обращать внимание на эти мелкие детали, то можно сказать, что все эти предметы имеют примерно одинаковую форму. Все они напоминают по форме изображенный на рисунке предмет, не имеющий никаких второстепенных деталей.
-Как можно назвать данный предмет?
Изображенное тело называется прямоугольный параллелепипед. (Данное словосочетание - “прямоугольный параллелепипед” - дети читают хором).
-Приведите примеры предметов, которые имеют форму прямоугольного параллелепипеда.
-Давай те час вместе выведем алгоритм построения данного прямоугольного параллелепипеда.
1. Построить прямоугольник заданной длины (а) и высоты (h).
2. Из каждой вершины отложить отрезок, равный половине ширины (в) под углом 45 градусов.
3. Соединить концы отрезков, причем невидимые грани - пунктирной линией.
-Из каждой вершины выходят три ребра, как можно назвать эти ребра?
Из каждой вершины прямоугольного параллелепипеда выходят три ребра. Длины этих ребер - длина, ширина и высота прямоугольного параллелепипеда, или его измерения.
А сейчас давайте познакомимся с его элементами.
Обращенная к нам сторона этого тела имеет форму прямоугольника.
Если внимательно посмотреть на это тело, то мы заметим, что вся поверхность прямоугольного параллелепипеда состоит из прямоугольников, которые называются его гранями.
-Ответьте, сколько граней имеет прямоугольный параллелепипед?
Стоит запомнить какая грань как называется: та грань, которая обращена к нам называется передней, точно такая же грань имеется сзади - это задняя грань, боковые грани - левая и правая. Та грань, которая сверху, называется верхняя, а грань, на которой фигура стоит, называется нижней или основанием.
Стороны прямоугольников, которые являются гранями прямоугольного параллелепипеда, называются ребрами этого прямоугольного параллелепипеда.
Выясните самостоятельно, сколько ребер имеет прямоугольный параллелепипед.
Вершины граней являются вершинами параллелепипеда.
-Самостоятельно посчитайте, сколько имеет вершин прямоугольный параллелепипед.
Две грани прямоугольного параллелепипеда, не имеющие общих ребер, называются противоположными. Противоположные грани всегда равны.
Две грани прямоугольного параллелепипеда, имеющие общее ребро, называются смежными гранями.
Прямоугольный параллелепипед, все ребра которого равны, называется кубом. Все грани куба - равные квадраты.
Мы с вами, таким образом, познакомились с прямоугольным параллелепипедом и его элементами.
Осталось нам научиться строить модель прямоугольного параллелепипеда, а поможет нам в этом алгоритм построения параллелепипеда.
IY Физкультминутка
На регуляцию психического состояния:
«Не боюсь»
В ситуации трудной задачи, выполнения контрольной работы. Дети выполняют действия под речевку учителя. Причем учитель говорит строчку речевки и делает паузу, а в это время дети про себя повторяют строчки:
Я скажу себе, друзья,
Не боюсь я никогда
Ни диктанта, ни контрольной,
Ни стихов и ни задач,
Ни проблем, ни неудач.
Я спокоен, терпелив,
Сдержан я и не хмурлив,
Просто не люблю я страх,
Я держу себя в руках.
Y. Практическая работа
Используя алгоритм построения прямоугольного параллелепипеда, построить прямоугольный параллелепипед заданных измерений. Длина - 6 см, высота - 5 см, ширина - 4 см. Обозначьте красным карандашом вершины прямоугольного параллелепипеда. Выпишите переднюю грань.
На каждой парте модель прямоугольного параллелепипеда и инструкция по изучению площади поверхности прямоугольного параллелепипеда.
ИНСТРУКЦИЯ ПО ИЗУЧЕНИЮ ПЛОЩАДИ ПОВЕРХНОСТИ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА
1. Измерь длину, ширину, высоту модели и запиши их.
2. Вычисли площадь каждой грани модели.
3. Сделайте вывод о площадях противоположных граней и запишите его.
4. Вычислите площадь всей поверхности вашего прямоугольного параллелепипеда.
Сделайте вывод.
YI. Домашняя работа.
п. 20, стр.165, сделать макет параллелепипеда;
№ 788, 789, 790
YII. Итог урока
Итог урока проводится по опорному конспекту, который демонстрируется на протяжении всего урока по этапам ознакомления с изучаемым материалом.