Презентация посвящена истории возникновения тригонометрических функций - как базовых, так и редко ныне используемых. Приводятся биографические сведения об авторах, истоический контекст их деятельности. Описываются стимулиремые практическими нуждами проблемы, способствовавшие развитию тригонометрии в Древней Греции, Арабском Востоке и Западной Европе. Приводится краткая сводка базовых положений и правил, составляющих современную очнову тригонометрии.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Из истории тригонометрии »
Л.Ю.Бухараева
Гимназия 96
г. Казани
Тема: «Из истории тригонометрии. Материалы к уроку»
Проблема:
Ученикам часто кажется,что тригонометрия– это скучный набор формул и графиков. И они не догадываются, что многое из того что нас окружает: восход и заход Солнца, затмения и движения планет, вращение колеса и биение сердца — это периодические процессы и явления, которые можно описать тригонометрическими функциями.
Тригонометрические функции
Сам термин «тригонометрические функции» введён Клюгелем в 1770.
Тригонометрические функции — элементарные функции , которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что эквивалентно, зависимость хорд и высот от центрального угла в круге ). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число .
Наука, изучающая свойства тригонометрических функций, называется тригонометрией .
К тригонометрическим функциям относятся:
прямые тригонометрические функции
синус (sin x )
косинус (cos x )
производные тригонометрические функции
тангенс (tg x )
котангенс (ctg x )
другие тригонометрические функции
секанс (sec x )
косеканс (cosec x )
В западной литературе тангенс, котангенс и косеканс обозначаются tan x , cot x , csc x .
Кроме упомянутых существуют также редко используемые тригонометрические функции (версинус и т.д.), а также обратные тригонометрические функции(арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.
Синус и косинус вещественного аргумента являются периодическими непрерывными и неограниченно дифференцируемыми
вещественнозначными функциями.
Остальные четыре функции на вещественной оси также вещественнозначные, периодические и неограниченно дифференцируемые на области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках ±π n + π/2, а котангенс и косеканс — в точках ±π n .
Древняя Греция
Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась изучалась как один из отделов астрономии. Насколько известно: способы решения треугольников (сферических) первые были письменно изложены греческим астрономомГиппархомв середине 2 века до н.э. Наивысшими достижениями греческая тригонометрия обязана астроному Птолемею (2 век н.э.), создателю геоцентрической системы мира, господствовавшей до Коперника.
Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.
Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского.
В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус a, например, изучался как полухорда, на которую опирается центральный угол величиной a, или как хорда удвоенной дуги.
История понятия синуса
Слово синус появилось в математике далеко не сразу. Этот термин имеет свою длительную (начиная с I-II вв.) и интересную историю. Зарождение тригонометрии связано с именами александрийских астрономов и в первую очередь с именем Клавдия Птолемея.
История понятия косинуса
Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cosa = sin( 90° - a)). Современное обозначение синуса sin и косинуса cos введено Леонардом Эйлером в XVIII веке.
прямые тригонометрические функции
синус ( sin x) , косинус ( cos x)
Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:
Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:
История развития тангенса
Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.
Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).
История возникновения котангенса
Не сохранилась. По видимому, его "родил" тангенс, когда как-то перевернулся (шутка).
производные тригонометрические функции
тангенс ( tg x) , котангенс ( ctg x)
Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему
Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):