Мир невозможных фигур» одна из интереснейших тем, которая получила свое бурное развитие всего лишь в начале ХХ века. Однако, гораздо раньше, многие ученые и философы занимались этим вопросом. Даже такие простые объемные формы, как куб, пирамида, параллелепипед можно представить как комбинацию нескольких фигур, находящихся на разном расстоянии от глаза наблюдателя. Всегда при этом должна быть линия, по которой изображение отдельныМир невозможных фигур» одна из интереснейших тем, которая получила свое бурное развитие всего лишь в начале ХХ века. Однако, гораздо раньше, многие ученые и философы занимались этим вопросом. Даже такие простые объемные формы, как куб, пирамида, параллелепипед можно представить как комбинацию нескольких фигур, находящихся на разном расстоянии от глаза наблюдателя. Всегда при этом должна быть линия, по которой изображение отдельных частей совмещающих в целостную картину.х часМир невозможных фигур» одна из интереснейших тем, которая получила свое бурное развитие всего лишь в начале ХХ века. Однако, гораздо раньше, многие ученые и философы занимались этим вопросом. Даже такие простые объемные формы, как куб, пирамида, параллелепипед можно представить как комбинацию нескольких фигур, находящихся на разном расстоянии от глаза наблюдателя. Всегда при этом должна быть линия, по которой изображение отдельных частей совмещающих в целостную картину.тей совмещающих в целостную картину.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Геометрия и жизнь »
«Геометрия и жизнь»
Выполнила:
Ученица 9 «В» класса МАОУ СОШ №28
Михальченко Александра
Руководитель:
Пангани Н.И
Я попыталась создать двухмерную модель трибара и сумасшедшего куба. Вот что вышло:
Актуальность: Тема моей работы актуальна ведь понимание парадоксов является одним из признаков того вида творческого потенциала, которым обладают лучшие математики, ученые и художники. Многие работы с нереальными объектами можно отнести к «интеллектуальным математическим играм». Моделировать подобный мир можно только с помощью математических формул, человек представить его просто не в состоянии. Человек неустанно мысленно создает вокруг себя то, что для него будет просто и понятно. Он даже не может себе представить, что некоторые объекты, окружающие его, могут быть «невозможными». На самом деле мир един, но рассматривать его можно с разных сторон.
Цель:
1.Выяснить, как создаются нереальные фигуры.
2. Найти области применения невозможных фигур.
Задачи :
1.Изучить литературы по теме «Невозможные фигуры».
2.Составить классификацию невозможных фигур.
«Мир невозможных фигур» одна из интереснейших тем, которая получила свое бурное развитие всего лишь в начале ХХ века. Однако, гораздо раньше, многие ученые и философы занимались этим вопросом. Даже такие простые объемные формы, как куб, пирамида, параллелепипед можно представить как комбинацию нескольких фигур, находящихся на разном расстоянии от глаза наблюдателя. Всегда при этом должна быть линия, по которой изображение отдельных частей совмещающих в целостную картину.
«Отец» невозможный фигур
«Отцом» невозможных фигур считается шведский художник Оскар Рутерсвард - специалист по созданию изображений невозможных фигур утверждал, что плохо разбирается в математике, но, тем не менее, возвел свое искусство в ранг науки, создав целую теорию создания невозможных фигур по определенному ряду шаблонов.
Он разделил фигуры на две основные группы. Один из них он назвал «истинные невозможные фигуры». Это двухмерные изображения трёхмерных тел, которые на бумаге можно раскрасить и нанести на них тени, но у них нет монолитной и стабильной глубины.
Другой вид – сомнительные невозможные фигуры. Эти фигуры не представляют собой единых цельных тел. Они являются соединением двух или большего числа фигур. Их нельзя ни раскрасить, ни нанести на них свет и тени.
За свою жизнь Рутерсвард изобразил около 2500 фигур. Книги Рутерсварда опубликованы на многих языках, в том числе на русском
Немного из истории:
Невозможные фигуры достаточно часто встречаются на древних гравюрах, картинах и иконах - в одних случаях мы имеем дело с явными ошибками передачи перспективы, в других - с умышленными искажениями, обусловленными художественным замыслом.
В средневековой японской и персидской живописи невозможные объекты являются неотъемлемой частью восточного художественного стиля, дающего лишь общий набросок картины, детали которой "приходится" додумывать зрителю самостоятельно, в соответствии со своими предпочтениями. Картины с искаженной перспективой встречаются уже в начале первого тысячелетия. На миниатюре из книги Генриха II, созданной до 1025 года и хранящейся в баварской государственной библиотеке в Мюнхене, нарисована Мадонна с младенцем. На картине изображен свод, состоящий из трех колонн, причем средняя колонна по законам перспективы должна располагаться впереди Мадонны, но находится за ней, что придает картине эффект нереальности.
Виды невозможных фигур
Один из видов невозможных фигур – трибар. Эта – фигура – возможно первый опубликованный в печати невозможный объект. Она появилась в 1958 году. Её авторы, отец и сын Лайонелл и Роджер Пенроузы, генетик и математик соответственно, определили этот объект как "трехмерную прямоугольную структуру". Она также получила название "трибар". С первого взгляда трибар кажется просто изображением равностороннего треугольника. Но стороны, сходящиеся вверху рисунка, кажутся перпендикулярными. В тоже время левая и правая грани внизу тоже кажутся перпендикулярными. Если смотреть на каждую деталь отдельно, то она кажется реальной, но, в общем, эта фигура существовать не может. Она не деформирована, но при черчении были неправильно соединены правильные элементы.
Эту фигуру чаще всего называют "Бесконечной лестницей", "Вечной лестницей" или "Лестницей Пенроуза" – по имени ее создателей. Ее также называют "непрерывно восходящей и нисходящей тропой". "Бесконечная лестница" – одна из самых известных классических невозможностей.
Впервые эта фигура была опубликована в 1958 году Лайонелом и Роджером Пенроузами вместе с трибаром и другими примерами зрительных иллюзий. Перед нами предстает лестница, ведущая, казалось бы, вверх или вниз, но при этом человек, шагающий по ней, не поднимается и не опускается. Завершив свой визуальный маршрут, он окажется в начале пути. Если бы вам в самом деле пришлось пройти по этой лестнице, вы бы бесцельно поднимались и спускались по ней бесконечное число раз.
"Бесконечной лестницей" с успехом воспользовался художник Мауриц К. Эшер, на этот раз в своей чарующей литографии "Восхождение и нисхождение", созданной в 1960 году.
Космическая вилка
Этот пресловутый невозможный объект с тремя (или с двумя?) зубцами стал популярен у инженеров и любителей головоломок в 1964 году. Первая публикация, посвященная необычной фигуре, появилась в декабре 1964 года. Автор назвал ее "Скобой, состоящей из трех элементов".
С практической точки зрения этот странный трезубец или механизм в виде скобы, абсолютно неприменим. Некоторые называют его просто "досадной ошибкой". Один из представителей аэрокосмической промышленности предложил использовать его свойства при конструировании межпространственного космического камертона.
сумасшедший ящик
Еще один невозможный объект появился в 1966 году в Чикаго в результате оригинальных экспериментов фотографа доктора Чарльза Ф. Кокрана. Многие любители невозможных фигур проводили эксперименты с "Сумасшедшим ящиком". Первоначально автор назвал ее "Свободным ящиком" и заявил, что она была "сконструирована для пересылки невозможных объектов в большом количестве".
"Сумасшедший ящик" – это вывернутый наизнанку каркас куба. Непосредственным предшественником "Сумасшедшего ящика" была "Невозможная коробка" (автор Эшер), а ее предшественником в свою очередь стал куб Неккера.
Невозможные фигуры - возможны!
Многие полагают, что невозможные фигуры действительно невозможны, и их нельзя создать в реальном мире. Но надо помнить, что любой рисунок на листе бумаги - это проекция трехмерной фигуры. Следовательно, любая фигура, нарисованная на листе бумаги, должна существовать в трехмерном пространстве. Невозможные объекты на картинах представляют собой проекции трехмерных объектов, а значит, объекты можно реализовать в виде скульптурных композиций. Существует множество способов их создания. Один из них - использование кривых линий в качестве сторон невозможного треугольника. Созданная скульптура выглядит невозможной только из единственной точки. Из этой точки кривые стороны выглядят прямыми, и поставленная цель будет достигнута - создан реальный "невозможный " объект.
Применение невозможных фигур
В Швеции их применяют в зубоврачебной практике: рассматривая картины в приемной, пациенты отвлекаются от неприятных мыслей перед кабинетом стоматолога.
Оскар Рутерсвард рассказывает в своей книге об использовании рисунков с изображением невозможных фигур для психотерапии. Он пишет, что картины своими парадоксами вызывают удивление, заостряют внимание и желание расшифровать.
Психолог Роджер Шепард использовал идею трезубца для своей картины невозможного слона.
Невозможные фигуры вдохновили художников на создание целого нового направления в живописи, названного импоссибилизмом.
За рубежом, на улицах городов, мы можем увидеть архитектурные воплощения невозможных фигур.
Заключение
Невозможные фигуры заставляют наш разум сначала увидеть то, чего быть не должно, затем искать ответ - что же сделано не так, в чем скрыта изюминка парадокса. А ответ найти порой не так - то просто - он скрыт в оптическом, психологическом, логическом восприятии рисунков.
Таким образом, можно сказать, что мир невозможных фигур чрезвычайно интересен и многообразен. Изучение невозможных фигур имеет довольно важное значение с точки зрения геометрии. Работа может быть использована на занятиях по математике для развития пространственного мышления учащихся. Для творческих людей, склонных к изобретательству, невозможные фигуры являются своеобразным рычагом для создания чего-то нового, необычного.
Литература
Левитин Карл Геометрическая рапсодия. - М.: Знание, 1984, -176 с.
Пенроуз Л., Пенроуз Р. Невозможные объекты, Квант, № 5,1971, с.26
Реутерсвард О. Невозможные фигуры. – М.: Стройиздат,1990, 206 с.
Ткачева М.В. Вращающиеся кубики. – М.: Дрофа, 2002. – 168 с.