Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности.
Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности.
Сегодня на уроке мы узнаем и увидим много нового и интересного: вспомним понятие правильного многоугольника, выведем формулы, связывающие площадь и сторону правильного многоугольника с радиуса вписанной окружности. Кроме того узнаем интересные исторические факты, связанные не только с правильными многоугольниками, но и многогранниками. Решим геометрические задачи по данной теме.
Мне хотелось бы начать со слов Бертрана Рассела: “Математика владеет не только истиной, но и высшей красотой…”.
Разминка
Вопрос о математических предпосылках прекрасного, о роли математики в жизни волновал еще древних греков, причем свой интерес они унаследовали от предшествующих цивилизаций. В наше время геометрия – необходимый элемент общего образования и культуры, представляет большой исторический интерес, имеет серьезное практическое применение и обладает внутренней красотой.
Название правильные идет из античных времен, когда стремились найти гармонию, правильность, совершенство в природе и человеке. До сих пор многоугольники нередко называют в науке по-гречески с окончанием “гон”: полигон – многоугольник, пентагон – пятиугольник (такой формы сверху здание театра Российской армии в Москве и министерство обороны США), гексагон – шестиугольник (ячейка пчелиных сот).
Замечательным примером пентагона является правильный звездчатый пятиугольник:
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.