Всеобщая арифметика" Ньютона издана была впервые в 1707 г. по авторской записи его лекций, читанных в Кембридже в 1673—1683 гг., а затем неоднократно переиздавалась с различными комментариями и дополнениями других авторов. Настоящий перевод выполнен с издания 1732 г. и сверен € английским переводом в издании 1728 г. Английский перевод, сделанный известным математиком Рефсоном еще при жизни Ньютона, помог мне облегчить язык русского перевода; в ряде случаев я ввел в русский перевод отдельные обороты английского издания, уточняющие смысл оригинального текста. Чертежи взяты из издания Кастильона 1761 г., но в настоящем переводе они помещены в соответствующих местах текста, а не сгруппированы в таблицах, как в старинных изданиях.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Всеобщая арифметика»
«Универсальная арифметика» (или «Всеобщая арифметика», лат. Arithmetica Universalis) — монография Исаака Ньютона, впервые опубликованная в 1707 году на латинском языке. Универсальной арифметикой Ньютон называл алгебру, и данный труд внёс существенный вклад в развитие этого раздела математики. Позднее книгу под таким же названием опубликовал Эйлер в 1768—1769 годах.
Среди курсов, которые вёл в Тринити-колледже Исаак Ньютон, был курс алгебры, и согласно правилам Ньютон сдал в университетскую библиотеку аккуратно оформленный латинский конспект этих лекций[1]. После ухода Ньютона от преподавательской деятельности его преемник на кафедре, Уильям Уистон опубликовал эту рукопись под названием «Универсальная арифметика». К первому изданию был приложен мемуар Галлея о численном методе нахождения корней уравнений. Книга вызвала большой интерес и неоднократно переиздавалась на разных языках; в XVIII веке вышли 5 только латинских её переизданий. Каждое новое издание сопровождалось растущим число комментариев и дополнений.
В начале книги Ньютон поясняет отношение арифметики и алгебры: цель алгебры — открыть и исследовать общие законы арифметики, а также предложить практические методы решения уравнений. Далее Ньютон даёт классическое определение вещественного числа как отношения результата измерения к единичному эталону[2]:
Под числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой за единицу.
Это определение фактически завершает многолетний процесс «уравнения в правах» целых, дробных и иррациональных чисел. В отличие от многих математиков того времени, Ньютон не рассматривал отдельно отрицательные числа и на примерах показал их полезность.
Затем излагается теория десятичных дробей, действий с ними и используемых обозначений. Ньютон в своих выкладках использовал обозначения Декарта, мало чем отличающиеся от современных. Однако, в отличие от Декарта, он полностью отделил алгебру от геометрии, подчеркнув, что при всей взаимной пользе у этих наук разные предметы.
В отдельных разделах, с многочисленными примерами и геометрическими иллюстрациями, излагаются действия с дробями, извлечение корней, типы уравнений, методы их упрощения и решения. Ньютон почти не приводит доказательств своих утверждений и основное внимание уделяет прикладным аспектам материала. Некоторые высказанные в книге глубокие теоремы удалось строго доказать только в XIX веке[1].
Особое внимание Ньютон уделил решению алгебраических уравнений, эта тема занимает почти половину книги. В ходе изложения приводятся решения 77 типовых задач (в основном геометрического характера), снабжённые подробными разъяснениями и методическими рекомендациями.
Среди других открытий Ньютона, изложенных в книге, можно упомянуть:
Одна из первых формулировок основной теоремы алгебры: число вещественных корней многочлена не превосходит его степени, а число комплексных корней всегда чётно.
Обобщение декартовского «правила знаков» для определения числа корней многочлена.