Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):
российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к
историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее
многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской
идентичности и главным фактором национального самоопределения;
воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.
Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:
гражданственность , гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные
права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие
гуманистические и демократические ценности, готового к участию в общественной жизни;
признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению
собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской
Федерации, правовая и политическая грамотность;
мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также
различных форм общественного сознания, осознание своего места в поликультурном мире;
интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или
социальной организации;
готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных
формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к
национальному достоинству людей, их чувствам, религиозным убеждениям;
Личностные результаты в сфере отношений обучающихся с окружающими людьми:
нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в
поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели
и сотрудничать для их достижения;
принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению,
мировоззрению;
способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями
здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей,
умение оказывать первую помощь;
формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного
сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия
и дружелюбия);
развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной,
учебно-исследовательской, проектной и других видах деятельности.
Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:
мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству,
владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных
знаниях об устройстве мира и общества;
готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к
непрерывному образованию как условию успешной профессиональной и общественной деятельности;
экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-
экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и
навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-
направленной деятельности;
эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.
Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:
ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей.
Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:
уважение ко всем формам собственности, готовность к защите своей собственности,
осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных,
государственных, общенациональных проблем;
потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение
к разным видам трудовой деятельности;
готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.
Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:
физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение
детьми безопасности и психологического комфорта, информационной безопасности.
2. Метапредметные результаты
2.1 Регулятивные УУД
Выпускник научится:
самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей,
основываясь на соображениях этики и морали;
ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты; организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
сопоставлять полученный результат деятельности с поставленной заранее целью.
2.2 Познавательные УУД
Выпускник научится:
искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его
основе новые (учебные и познавательные) задачи;
критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных
источниках;
использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий,
выявленных в информационных источниках;
находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим
замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов
действия;
выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные
ограничения;
менять и удерживать разные позиции в познавательной деятельности.
2.3 Коммуникативные УУД
Выпускник научится:
осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее
пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных
симпатий;
при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик,
исполнитель, выступающий, эксперт и т.д.);
координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную
В результате изучения учебного предмета «Математика: алгебра и начала математического анализа, геометрия» на уровне
среднего общего образования выпускник на базовом уровне научится:
Название раздела
Базовый уровень
«Проблемно-функциональные результаты»
I. Выпускник научится
на базовом уровне
II. Выпускник получит возможность
научиться на базовом уровне
Цели освоения предмета
Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики
Для развития мышления, использования в повседневной жизни
и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики
Требования к результатам
Элементы теории множеств и математической логики
Оперировать на базовом уровне1 понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал;
оперировать на базовом уровне понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
находить пересечение и объединение двух множеств, представленных графически на числовой прямой;
строить на числовой прямой подмножество числового множества, заданное простейшими условиями;
распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров.
В повседневной жизни и при изучении других предметов:
использовать числовые множества на координатной прямой для описания реальных процессов и явлений;
проводить логические рассуждения в ситуациях повседневной жизни
Оперировать2 понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
проверять принадлежность элемента множеству;
находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
проводить доказательные рассуждения для обоснования истинности утверждений.
В повседневной жизни и при изучении других предметов:
использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов
Числа и выражения
Оперировать на базовом уровне понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;
оперировать на базовом уровне понятиями: тригонометрическая окружность, градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;
выполнять арифметические действия с целыми и рациональными числами;
выполнять несложные преобразования числовых выражений, содержащих степени чисел, либо корни из чисел.
сравнивать рациональные числа между собой;
оценивать и сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел в простых случаях;
изображать точками на числовой прямой целые и рациональные числа;
изображать точками на числовой прямой целые степени чисел, корни натуральной степени из чисел в простых случаях;
выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;
выражать в простейших случаях из равенства одну переменную через другие;
вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
изображать схематически угол, величина которого выражена в градусах;
оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов.
В повседневной жизни и при изучении других учебных предметов:
выполнять вычисления при решении задач практического характера;
выполнять практические расчеты с использованием при необходимости справочных материалов и вычислительных устройств;
соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;
использовать методы округления, приближения и прикидки при решении практических задач повседневной жизни
Свободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;
приводить примеры чисел с заданными свойствами делимости;
оперировать понятиями: тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и π;
выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства;
находить значения корня натуральной степени, степени с рациональным показателем используя при необходимости вычислительные устройства;
пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, тригонометрические функции;
находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
изображать схематически угол, величина которого выражена в градусах или радианах;
использовать при решении задач табличные значения тригонометрических функций углов;
выполнять перевод величины угла из радианной меры в градусную и обратно.
В повседневной жизни и при изучении других учебных предметов:
выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства;
оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира
Уравнения и неравенства
Решать линейные уравнения и неравенства, квадратные уравнения;
приводить несколько примеров корней простейшего тригонометрического уравнения вида: sin x = a, cos x = a, tg x = a, ctg x = a, где a – табличное значение соответствующей тригонометрической функции.
В повседневной жизни и при изучении других предметов: составлять и решать уравнения и системы уравнений при решении несложных практических задач
Решать рациональные, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;
использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;
использовать метод интервалов для решения неравенств;
использовать графический метод для приближенного решения уравнений и неравенств;
изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;
выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.
В повседневной жизни и при изучении других учебных предметов:
составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;
использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач.
Функции
Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область
определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;
оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, тригонометрических функций;
соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, тригонометрических функций с формулами, которыми они заданы;
находить по графику приближённо значения функции в заданных точках;
определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);
строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).
В повседневной жизни и при изучении других предметов:
определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);
интерпретировать свойства в контексте конкретной практической ситуации
Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество
значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;
оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, тригонометрические функции;
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);
решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.
В повседневной жизни и при изучении других учебных предметов:
определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);
интерпретировать свойства в контексте конкретной практической ситуации;
определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
Элементы математического анализа
Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;
определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;
решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.
В повседневной жизни и при изучении других предметов:
пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;
соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);
использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса
Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;
вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.
В повседневной жизни и при изучении других учебных предметов:
решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.;
интерпретировать полученные результаты
Статистика и теория вероятностей, логика и комбинаторика
Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
вычислять вероятности событий на основе подсчета числа исходов.
В повседневной жизни и при изучении других предметов:
оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;
читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков
Иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;
иметь представление о математическом ожидании и дисперсии случайных величин;
иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
понимать суть закона больших чисел и выборочного метода измерения вероятностей;
иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
иметь представление о важных частных видах распределений и применять их в решении задач;
В повседневной жизни и при изучении других предметов:
вычислять или оценивать вероятности событий в реальной жизни;
выбирать подходящие методы представления и обработки данных;
уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях
Текстовые задачи
Решать несложные текстовые задачи разных типов;
анализировать условие задачи, при необходимости строить для ее решения математическую модель;
понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;
действовать по алгоритму, содержащемуся в условии задачи;
использовать логические рассуждения при решении задачи;
работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи;
осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;
анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
решать задачи на расчет стоимости покупок, услуг, поездок и т.п.;
решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;
решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;
решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временнóй оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.;
использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.
В повседневной жизни и при изучении других предметов: решать несложные практические задачи, возникающие в ситуациях повседневной жизни
Решать задачи разных типов, в том числе задачи повышенной трудности;
выбирать оптимальный метод решения задачи, рассматривая различные методы;
строить модель решения задачи, проводить доказательные рассуждения;
находить площади поверхностей геометрических тел с применением формул;
вычислять расстояния и углы в пространстве.
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний
Векторы и координаты в пространстве
Оперировать на базовом уровне понятием декартовы координаты в пространстве;
находить координаты вершин куба и прямоугольного параллелепипеда
Оперировать понятиями декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные векторы;
История математики
Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;
понимать роль математики в развитии России
Представлять вклад выдающихся математиков в развитие математики и иных научных областей;
понимать роль математики в развитии России
Методы математики
Применять известные методы при решении стандартных математических задач;
замечать и характеризовать математические закономерности в окружающей действительности;
приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства
Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
применять основные методы решения математических задач;
на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
применять простейшие программные средства и электронно-коммуникацион ные системы при решении математических задач
2. Содержание учебного предмета «Математика: алгебра и начала математического анализа, геометрия»
(базовый уровень)
10 класс
Название раздела
Краткое содержание.
Кол-во часов
Алгебра и начала анализа
88 ч.
Алгебра
Повторение. Преобразования простейших выражений.( 8 ч = 3+5ч ) (Некоторые сведения алгебры.) Понятие натурального числа. Множества чисел. Свойства действительных чисел. Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу с помощью линейных и квадратных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков.
Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности . Графическое решение уравнений и неравенств.
Основы тригонометрии. ( 24 ч)Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0, 30, 45, 60, 90, 180, 270. ( рад). Формулы сложения тригонометрических функций, формулы приведения, формулы двойного аргумента.
Арккосинус, арксинус, арктангенс числа. Арккотангенс числа. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Решение простейших тригонометрических неравенств.
32 ч.
Функции
Функции. Область определения и множество значений. График функции. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции. Четность и нечетность функций. Сложные функции. Тригонометрические функции . Функция . Свойства и графики тригонометрических функций: периодичность, основной период. Обратная функция. График обратной функции Обратные тригонометрические функции, их свойства и графики.
26 ч
Начала математического анализа
Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Понятие о непрерывности функции. (3 ч)
Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Правила дифференцирования.Вторая производная, ее геометрический и физический смысл. Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач.(21 ч)
24 ч
Элементы комбинаторики, статистики и теории вероятностей.
Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля. Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества
Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события.
6 ч
Геометрия.
Повторение.Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Наглядная стереометрия. (4 ч)
Фигуры и их изображения (куб, пирамида, призма). Точка, прямая и плокость впространстве, аксиомы стереометрии и следствия из них.
Параллельность прямых и плоскостей в пространстве.(14ч) Взаимное расположение прямых и плоскостей в пространстве. Сечения куба и тетраэдра. Изображение простейших пространственных фигур на плоскости. Расстояния между фигурами в пространстве. Углы в пространстве.
Перпендикулярность прямых и плоскостей.(14ч) Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трех перпендикулярах.
Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида,ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Формулы площади поверхностей. Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире. Сечения куба, призмы, пирамиды. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр)Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды
Координаты и векторы.(6 ч) Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.
48 ч
Итого:
136 ч.
11 класс
Название раздела
Краткое содержание
Алгебра и начала анализа
Алгебра
Действительные числа Степень с действительным показателем, свойства степени Логарифм числа, свойства логарифма. Десятичный логарифм. Число е. Натуральный логарифм. Преобразование логарифмических выражений. Решение уравнений степени выше 2 специальных видов. Теорема Виета, теорема Безу. Приводимые и неприводимые многочлены. Основная теорема алгебры. Симметрические многочлены. Целочисленные и целозначные многочлены. Методы решения функциональных уравнений и неравенств.
Уравнения, неравенства и их системы Простейшие показательные уравнения и неравенства. Логарифмические уравнения и неравенства. Иррациональные уравнения. Метод интервалов для решения неравенств. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля. Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических неравенств. Уравнения, системы уравнений с параметром. Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических неравенств.
Функции
Показательная функция и ее свойства и график. Число и функция . Логарифмическая функция и ее свойства и график. Степенная функция и ее свойства и график. Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражение относительно координатных осей Точки экстремума (максимума и минимума). Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных.
Элементы математического анализа .
Производные элементарных функций. Правила дифференцирования. Применение производной при решении задач Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница.Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла
Элементы комбинаторики, статистики и теории вероятностей.
Повторение. Решение задач на табличное и графическое представление данных. Использование свойств и характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии. Решение задач на определение частоты и вероятности событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики. Решение задач на вычисление вероятностей независимых событий, применение формулы сложения вероятностей.Решение задач с применением диаграмм Эйлера, дерева вероятностей, формулы Бернулли.
Условная вероятность.Правило умножения вероятностей. Формула полной вероятности.
Математическое ожидание и дисперсия случайной величины.Математическое ожидание и дисперсия суммы случайных величин. Геометрическое распределение. Биномиальное распределение и его свойства.
Непрерывные случайные величины. Понятие о плотности вероятности. Равномерное распределение.
Геометрия
Повторение. Решение задач на измерения на плоскости, вычисления длин и площадей. Решение задач с помощью векторов и координат. Пирамида. Виды пирамид. Элементы правильной пирамиды. Площади поверхностей многогранников..
Координаты и векторы. Векторы и координаты в пространстве. Сумма векторов, умножение вектора на число, угол между векторами. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трем некомпланарным векторам. Скалярное произведение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объемов.
Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве . Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот. Свойства движений. Применение движений при решении задач.
Тела вращения: цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости. Представление об усеченном конусе, сечения конуса (параллельное основанию и проходящее через вершину), сечения цилиндра (параллельно и перпендикулярно оси), сечения шара. Развертка цилиндра и конуса. Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара.
Простейшие комбинации многогранников и тел вращения между собой. Вычисление элементов пространственных фигур (ребра, диагонали, углы).
Обьем: Понятие об объеме. Объем пирамиды и конуса, призмы и цилиндра. Объем шара. Подобные тела в пространстве. Соотношения между площадями поверхностей и объемами подобных тел. Объемы многогранников. Объемы тел вращения. Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур.
Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.
Обобщение и систематизация курса алгебры и начал математического анализа и геометрии за 10-11 класс
Формула бинома Ньютона и треугольник Паскаля. Решение комбинаторных задач. Рациональные уравнения и неравенства. Степень положительного числа. Преобразования простейших выражений, включающих арифмети ческие операции, а также операцию возведения в степень. Преобразования тригонометрических, логарифмических, показательныхи и иррациональных выражений. Тригонометрические, логарифмические, показательные и иррацио нальные уравнения и неравенства.
Параллельность прямых и плоскостей. Перпендикулярность прямых и плоскостей. Многогранники. Векторы в пространстве. Решение задач из ЕГЭ (геометрия)
3. Тематическое планирование учебного предмета «Математика: алгебра и начала математического анализа, геометрия»
(базовый уровень)
Тематическое планирование для 10-11 классов составлено с учетом рабочей программы воспитания. Воспитательный потенциал данного учебного предмета обеспечивает реализацию следующих целевых приоритетов воспитания обучающихся ООО:
Развитие ценностного отношения:
- к семье как главной опоре в жизни человека и источнику его счастья;
- к труду как основному способу достижения жизненного благополучия человека, залогу его успешного профессионального самоопределения и ощущения уверенности в завтрашнем дне;
- к своему отечеству, своей малой и большой Родине как месту, в котором человек вырос и познал первые радости и неудачи, которая завещана ему предками и которую нужно оберегать;
- к самим себе как хозяевам своей судьбы, самоопределяющимся и самореализующимся личностям, отвечающим за свое собственное будущее.
- к ценностям иных культур, их традициям и обычаям;
- к природе как источнику жизни на Земле, основе самого ее существования, нуждающейся в защите и постоянном внимании со стороны человека;
- к миру как главному принципу человеческого общежития, условию крепкой дружбы, налаживания отношений с коллегами по работе в будущем и создания благоприятного микроклимата в своей собственной семье;
- к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда;
- к культуре как духовному богатству общества и важному условию ощущения человеком полноты проживаемой жизни, которое дают ему чтение, музыка, искусство, театр, творческое самовыражение;
- к здоровью как залогу долгой и активной жизни человека, его хорошего настроения и оптимистичного взгляда на мир;
- к окружающим людям как безусловной и абсолютной ценности, как равноправным социальным партнерам, с которыми необходимо выстраивать доброжелательные и взаимоподдерживающие отношения, дающие человеку радость общения и позволяющие избегать чувства одиночества.
10 класс
Название раздела, темы
Общее количество часов
Контрольные работы
Алгебра и начала анализа
86 ч
Повторение материала 7-9 кл. ( действительные числа)
3
Алгебра. Числовые функции
8
1
Тригонометрические функции
18
1
Тригонометрические уравнения
7
1
Преобразования тригонометрических выражений
16
1
Производная. Начала математического анализа
23
2
Элементы комбинаторики, статистики и теории вероятностей
5
1
1.8Итоговое повторение
6
1
Геометрия
50 ч
2.1 Введение. Предмет стереометрии
4
2.2 Параллельность прямых
8
1
2.3 Параллельность плоскостей
6
1
2.4 Перпендикулярность прямых и плоскостей
12
1
2.5 Многогранники
8
1
2.6 Векторы в пространстве
5
1
2.7 Итоговое повторение
7
Итого
136 ч
13
11 класс
Название раздела, темы
Общее количество часов
Контрольные работы
Алгебра и начала анализа
78 ч
Степени и корни. Степенные функции
15
1
Показательная и логарифмическая функции
24
3
Первообразная и интеграл
9
1
Элементы теории вероятностей и математической статистики
6
1
Уравнения и неравенства. Системы уравнений и неравенств
16
2
Предэкзаменационная работа
3
1
1.8 Обобщающее повторение
5
Геометрия
58
2.1 Метод координат в пространстве
15
2
2.2 Цилиндр, конус, шар
16
1
2.3 Объемы тел
22
2
2.4 Обобщающее повторение
5
Итого 11 класс:
136 ч
13
1 Здесь и далее: распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.
2 Здесь и далее; знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, решении задач.