Просмотр содержимого документа
«Выступление на тему "Формы развивающего обучения на уроках математики"»
Формы развивающего обучения на уроках математики.
Самостоятельная работа на уроках математики как одна из форм развивающего обучения
Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью
Л.Н.Толстой
Окружающий нас мир настолько сложен и многогранен и не до конца изучен, что никто не вправе считать свое образование завершенным с окончанием средней школы и даже ВУЗа. Скорее, с этого оно только начинается. “Наука – дело не легкое. Наука пригодна лишь для сильных умов”, - сказал французский философ Мишель де Монтень. Это действительно так: как же долог и нелегок путь постановки вопроса до его решения, до получения результатов! Пройти его способен не каждый.
“Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью”, - сказал Л.Н.Толстой”. И с ним можно только согласиться, так как учащиеся прочно усваивают только то, что прошло через их усилие.
Проблема самостоятельности учащихся при обучении не является новой. Этому вопросу отводили исключительную роль ученые всех времен. Особенно четкие концепции о роли самостоятельности в приобретении знаний имеются в трудах Константина Дмитриевича Ушинского, Николая Григорьевича Чернышевского, Дмитрия Ивановича Писарева.
Эта проблема актуальна и сейчас. Внимание к ней объясняется тем, что самостоятельность играет весомую роль не только при получении среднего образования, но и при продолжении обучения после школы, а так же в дальнейшей трудовой деятельности. Основа любой профессии – это знание.
Но как научить своих учеников учиться, мыслить самостоятельно и вслушиваться в слово, его музыку, его тайные смыслы?
Выход один: нужно дать ребятам возможность самим искать ответ – искать, может быть, мучительно, всю жизнь, но всерьез. Значит нужно научить их думать.
Результат нашей совместной работы скажется: научившись думать самостоятельно, мои ученики сами смогут овладеть знаниями и анализировать проблемы. Я не смогу их всегда опекать, они окончат школу и уйдут, но механизм работы мысли уже приведен в действие.
Вот тогда, может быть, и будет реализовано назначение образования. Появятся новые вопросы. И мы будем жить дальше.
Размышляя, таким образом, я пришла к выбору темы по самообразованию “Самостоятельная работа на уроках математики как одна из форм развивающего обучения”.
Система работы
Изучение теории, проблем в обучении
Отбор содержания образования, выбор технологии
Диагностическая работа с учащимися совместно с психологом и социальным педагогом
Организация учебного процесса
Методыиприёмы
Формыивиды
Средства обучения
Контроль знанийиумений учащихся
Рефлексия.
Результаты работы, анализ,
Корректировка программы работы
Ученик, получая знания и теоретически обоснованные способы действий, может сам вырабатывать пути решений поставленных проблем.
Одним из инструментов развития мышления, ведущего к формированию творческой деятельности, является самостоятельная работа.
В ходе работы отметила, что в сохранении активности мыслительной деятельности учащегося к тому, что он делает на уроке и дома, большую роль играет интерес.
Поэтому поставила перед собой ряд целей:
формирование и дальнейшее развитие мыслительных операций: анализа, сравнения, обобщения;
развитие и тренинг творческого мышления;
стимулирование интереса к познавательной деятельности учащихся, активности, самостоятельности, упорства в достижении цели;
регулярный контроль за успеваемостью учащихся по предмету.
Анализируя свои уроки, пришла к выводу, что самостоятельная работа должна:
занимать от 12 до 88% времени занятия. Поэтому для управления процессом познания были выделены конкретные задачи:
разнообразить методы обучения с широким внедрением элементов самостоятельной работы учащихся на уроке;
совершенствовать формы, методы контроля и оценку знаний, умений и навыков учащихся;
осуществлять индивидуальный подход к учащимся.
Уверена, что правильная организация учебного труда – самый главный фактор успешного самообразования, а значит и развитие самостоятельности учащихся.
Академик Николай Евгеньевич Введенский писал: “Устают и изнемогают не оттого, что много работают, а оттого, что плохо организуют свою деятельность”.
Совершенствование методики преподавания и методов обучения неразрывно связано с вопросами развития самостоятельности у учащихся. Поэтому использую различные приемы работы с учеником. На занятиях ориентируюсь на всех учащихся в целом и на каждого в отдельности, имея в виду общие знания. Считаю, что такой подход побуждает к работе слабого ученика и стимулирует сильного.
Для этого выбираю разные методы работы:
устный;
словесно-графический;
наглядный;
практический.
Методы, приемы и средства обучения
Таблицы, учебники
Карточки для устной работы
Фронтальный опрос, устные контрольные работы
Чертёжные, измерительные и вычислительные инструменты
Построение графиков, их чтение
Построение фигур и работа с ними
Таблицы, схемы, рисунки, модели фигур, учебники, справочная литература.
Работа по образцам, по алгоритму, работа с моделями, творческие работы
Описания, инструкции, учебники, проекты
Практические и лабораторные работы, создание проектов
Формы и виды самостоятельной работы
Устные
Письменные
Тесты
Обучающие
Тренировочные
Закрепляющие
Повторительные
Развивающие
Творческие
Контролирующие
Работа с книгой
Решение и составление задач
Лабораторные работы
Практические работы
Подготовка докладов, рефератов
Общеклассные
Групповые
Индивидуальные
Классные
Домашние
Каждый из них реализуется в системе приемов, таких как: фронтальный опрос, устные контрольные работы, построение графиков, диаграмм, фигур на плоскости и в пространстве, работа с ними, с перфокартами, моделями по алгоритму, практические и лабораторные, работа над проектами, сказками, рефератами.
Использую дифференцированные средства обучения: таблицы, учебник, схемы, модели фигур и плоскостей, проекты, описание работ, чертежные и измерительные приборы, карточки для устной и письменной работы, дополнительную и справочную литературу.
Провожу самостоятельные работы, которые различаются:
по дидактическим целям:
обучающие;
тренировочные;
закрепляющие;
повторительные;
развивающие;
творческие.
по уровню самостоятельности учащихся:
по образцу (репродуктивные);
реконструктивные, вариативные;
эвристические (частично-поисковые);
исследовательские (творческие: кроссворды, занимательные задачи, ребусы, анаграммы и др.)
по степени индивидуальности:
общеклассные (по вариантам, дифференцируемые);
групповые (в группах, парах);
индивидуальные.
по источнику и методу приобретения знаний:
работа с книгой (в классе, дома);
решение и составление задач;
лабораторные и практические работы;
подготовка докладов, рефератов.
по месту выполнения:
классные;
домашние.
по форме выполнения:
устные;
письменные;
тесты.
Все эти виды работы помогают устанавливать связь между новым материалом и ранее изученным. Навыки, полученные учеником в процессе самостоятельной работы, используются им в решении задач, в работе с учебником в классе и дома.
Культура мыслительной деятельности ученика значительно повышается, он успешнее овладевает теоретическими знаниями, более умело применяет их в своей самостоятельной практической работе, которая играет роль своеобразного мостика. Через него должен пройти каждый ученик на пути от понимания к овладению знаниями. Как правило, однообразие снижает интерес учеников к работе. Хотя в курсе математики довольно часто встречаются темы, изучение которых требует решения большого числа однотипных задач. Но без них невозможно выработать устойчивые навыки. Разнообразие самостоятельных работ позволяет поддерживать интерес учащихся к данным темам.
От того, как организован контроль знаний и умений, зависит эффективность учебной работы. Поэтому в учебной практике уделяю серьезное внимание его методам, приемам, формам и видам.
На уроках применяю следующие виды проверки:
предварительная;
текущая;
периодическая;
итоговая.
Использую различные формы контроля:
по способу предъявления (письменный и устный);
по числу проверяемых (индивидуальный, групповой, фронтальный);
по месту проведения (в классе или дома);
по степени дифференцируемости (дифференцируемый или нет);
по объему контролируемого материала (итоговый – экзамен, промежуточный – зачет, контрольная работа);
по характеру предъявляемых знаний (вопросы, работа с печатными средствами: карточки, рабочие тетради, тесты, перфокарты; работа над ошибками, схемы, таблицы, диаграммы, графики).
Регулярное использование разнообразных самостоятельных работ позволило добиться высокой успеваемости (98%, 99%, 100%) по математике и за последние три года роста качества знаний с 43% до 54% .
Процесс обучения – всегда процесс творческий. Опыт моей работы позволяет сделать следующие выводы:
Одним из путей развития творческой активности учащихся, совершенствования процесса обучения математике является организованная система работ;
Систематическое проведение самостоятельных работ и повышение их учебно-познавательной роли в учебном процессе содействует значительному улучшению качества математической подготовки школьников;
Связывая изучение теоретических вопросов с практической деятельностью, самостоятельные работы дают возможность учащимся самим ликвидировать пробелы, расширять знания, творчески применять их в решении различных задач;
Контроль за выполнением таких работ содействует организации тематического учета знаний, помогает мобилизовать деятельность, способствует развитию мышления школьников.
Итак, самостоятельность – это качество человека, которое характеризуется сознательным выбором действия и решительностью в его осуществлении. Оно присуще в той или иной степени каждому из нас.
Жизнь человека – это движение по пути познания. Каждый шаг может обогащать нас, если благодаря новому мы начинаем видеть то, чего ранее не замечали или не понимали, чему не придавали значение.
Уроки математики позволяют более правильно воспринимать окружающий мир, постигать истину, укреплять здравый смысл, находить свое место в мире, выбирать стиль поведения.
Как будет вести себя человек, столкнувшись с незнакомым, неизведанным и непонятным? Один обойдет стороной, другой понаблюдает издалека, а кто-то попробует проникнуть в глубину и разобраться. Вот тут-то ему и пригодятся воля, навыки, мужество и самостоятельность. Чтобы дойти до конца. Чтобы найти выход. И если мои ученики дойдут до конца, значит, в этом есть и моя заслуга.