Цели урока: повторить правила сравнения чисел; ввести определение понятия числового неравенства; формировать умение использовать данное определение для сравнения чисел и доказательства неравенств.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«"Числовые неравенства"»
Алгебра 8 класс
15.02.17
Классная работа
Тема урока: Числовые неравенства
Цели урока: повторить правила сравнения чисел; ввести определение понятия числового неравенства; формировать умение использовать данное определение для сравнения чисел и доказательства неравенств.
Ход урока
I. Организационный момент.
II. Анализ результатов контрольной работы.
1. Объявить результаты контрольной работы, выделить типичные ошибки, допущенные учащимися при её выполнении.
2. Вынести на доску решение заданий, с которыми учащиеся не справились.
III. Актуализация знаний.
Вспоминаем с учащимися материал о сравнении действительных чисел. Напоминаю, что геометрически определению понятий «больше» и «меньше» соответствует взаимное расположение точек на координатной прямой: из двух чисел больше то, которое на координатной прямой расположено правее, и меньше то, которое расположено левее. Используя координатную прямую, учащимся следует помнить, что всякое отрицательное число меньше нуля. Затем повторяем правила сравнения чисел:
1. Всякое отрицательное число меньше любого положительного числа.
2. Из двух дробей с одинаковым знаменателем больше та, у которой больше числитель.
Отсюда следует, что для сравнения обыкновенных дробей, необходимо сперва привести их к общему знаменателю.
3. Из десятичных дробей больше та, у которой больше целая часть. Если целые части совпадают, то сравниваем в разрядах десятых, сотых, тысячных и т. д., пока не «увидим» большую цифру в разряде.
4. Чтобы сравнить обыкновенную и десятичную дроби, приведём обыкновенную дробь к десятичной и сравним две десятичные дроби.
5. Из двух отрицательных чисел больше то, модуль которого меньше.