Взаимодействие учителя и учащихся в процессе организации самостоятельной работы.
Взаимодействие учителя и учащихся в процессе организации самостоятельной работы.
Важным моментом подготовки к уроку является поиск приемов, позволяющих эффективно использовать учебный материал для выработки у школьников навыков самообразования. На хорошем уроке всегда есть своя сверхзадача, сводящаяся именно к формированию этих навыков и меняющаяся в зависимости от темы урока.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Взаимодействие учителя и учащихся в процессе организации самостоятельной работы. »
Взаимодействие учителя и учащихся в процессе
организации самостоятельной работы.
Гамарских А.Г.
учитель математики
МБОУ «Школа №17»
г. Полысаево
Важным моментом подготовки к уроку является поиск приемов, позволяющих эффективно использовать учебный материал для выработки у школьников навыков самообразования. На хорошем уроке всегда есть своя сверхзадача, сводящаяся именно к формированию этих навыков и меняющаяся в зависимости от темы урока. В одном случае она состоит в обучении приемам анализа, умению видеть закономерности, ставить вопросы, делать выводы. В другом – в формировании критического отношения учащихся к результатам своей работы, требовательности к себе. Постоянного внимания учителя требует и проблема воспитания у учащихся веры в свои способности. Найти приемы, позволяющие реализовать такую сверхзадачу, помогает практика, пережитые неудачи и долгие раздумья над работами.
Известно, что многие ученики просто боятся приступать к задачам, алгоритм решения которых им неизвестен. В старших классах новая проблема далеко не всегда вызывает только интерес. Порой проявляется страх перед трудностями, неумение преодолевать их самостоятельно. В таком случае нужна задача, которая на первый взгляд, кажется, простой, а на самом деле требует нестандартного подхода. Иллюзия простоты усилится, если предложить ее на первых минутах урока, когда учащиеся еще не устали и психологически готовы к выполнению заданий средней трудности.
Рассмотрим одну такую задачу по геометрии.
Дан равносторонний треугольник АБС. Из точки А проведен луч и на нем взята точка М так, что ВМА=20º, АМС=30º. Найти ВАМ.
Задачу разбираем по готовому чертежу. Сначала ученикам предлагается высказать идеи решения без всяких доказательств, интуитивно. Необходимо, чтобы класс «заговорил», все должны подключиться к обсуждению высказанных предложений. Учащиеся быстро замечают, что АВС=2АМС и АВ=ВС. Теперь предлагаем перечислить те способы нахождения углов, которые могут пригодиться для решения данной задачи. Указываются следующие способы: по теоремам о сумме углов треугольника и четырехугольника, по теореме синусов или косинусов, из свойств вписанных четырехугольников, из соотношения центральных и вписанных углов и т.д.
Если вслед за этим перечислением конкретных предложений по поводу решения данной задачи не поступит, то фразу «величина угла АВС равна 60º, а величина угла АМС-30º» учитель просит сформулировать иначе, направляя поиск к такому результату: «отрезок АС виден из точки В под углом в 60º, а из точки М под углом в 30º». Тогда учащиеся сразу выявят идею дополнительного построения. Они проводят окружность с центром в точке В и радиусом АВ. После этого всем становится ясно, что точка М лежит на этой окружности и ВАМ=20º.
Укажем теперь прием формирования критического отношения учеников к результатам своей работы.
Навыки самоконтроля можно развивать и на занимательных задачах, основанных на обычной житейской смекалке. Их полезно рассматривать как в младших, так и в старших классах. Эти задачи привлекают внимание всех учащихся, даже тех, которые не имеют особых успехов в нашем предмете. Вот одна из таких задач:
В каждой руке лежит по одной монете, всего15 копеек. Определите, какие это монеты, если известно, что в одной руке не пятачок.
Здесь целесообразно показать учащимся необходимость серьезного анализа каждого слова в формулировке любой задачи. Попутно следует подчеркнуть, что данная задача содержит лишнее условие (в одной руке не пятачок), являющееся далеко не безобидным. Именно оно и осложняет решение, увлекая мысль по ложному пути.
Трудно удержать интерес учащихся к предмету, если преследуется единственная цель: научить школьников выполнять действия по данному образцу. Поэтому наряду с изучением алгоритмов возникает необходимость учить осознанному, творческому их применению. Укажем один распространенный прием такого обучения. Сразу после того, как учащиеся освоили эти этапы алгоритма, им предлагается задача, которая решается по изученному алгоритму, но не самым рациональным способом. Более красивое решение получается, если не следовать алгоритму, а просто проанализировать условие задачи и сделать верные выводы.
До сих пор мы рассматривали методические приемы, связанные с особенностями решения нестандартных задач. Укажем теперь приемы, которые можно применять в сочетании с самыми разными наборами упражнений.
На уроках геометрии иногда полезно «досочинить» задачу. Обычно для этого мы выбираем из учебника задачу на доказательство. Выписываем ее условие, а то, что надо доказать, придумываем сами. После решения «своей» задачи полезно бывает сравнить ее с той, что предлагалась в учебнике. На уроках алгебры, особенно при разборе контрольных работ, мы составляем задачи, аналогичные тем, которые были в контрольной. В этом случае обсуждение ошибок учащихся проходит интереснее, так как при этом уже решаются «новые» задачи.
Воспитывать навыки самообучения можно и на уроках устной контрольной работы. Несколько слов о методике ее проведения.
На доске написаны упражнения, которые учащиеся должны решить устно. Класс приступает к работе. Через некоторое время руки поднимают те, кто выполнили первое задание. Когда с упражнением справилась большая часть класса, разрешается в тетрадях поставить его номер и записать ответ.
Если цель урока в том, чтобы еще раз отработать вопросы теории, то разбор каждого решения происходит после того, как записан ответ. Если же цель контрольной в проверке знаний, то задания разбираются после выполнения всей работы. Затем ученикам сообщается, за сколько решенных примеров ставится «5», за сколько «4» (других оценок за работу не ставят), и они говорят свою оценку учителю.
Конечно, такую работу можно проводить тогда, когда учитель уверен в должной организованности класса. Доверие учителя оказывает на ребят большое воспитывающее воздействие. Сама же работа не является единственной целью урока. Его сверхзадача – воспитание личности ученика, организация ситуации, в которой формируются такие качества, как честность и требовательность к себе, умение разумно организовать свой труд.