kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Подготовка к ОГЭ "Решение задач на смеси и сплавы"

Нажмите, чтобы узнать подробности

Разработка урока для подготовки к ОГЭ по решению задач на смеси и сплавы

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Подготовка к ОГЭ "Решение задач на смеси и сплавы"»

Решение задач на смеси и сплавы (подготовка к ОГЭ)

1) Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Решение.

Первый раствор: х100%

Вещество: ?15%

Откуда ? = 15 · х /100 = 0,15х – вещества в I растворе

Второй раствор: х 100%

Вещество: ?19%

Откуда ? = 19 · х /100 = 0,19х – вещества во II растворе

Третий раствор: 100%

Вещество: 0,15х + 0,19ху%

Откуда у = 0,34х · 100 /2х = 17% – концентрация нового раствора

Ответ 17%

2) Первый сплав содержит 5% меди, второй — 11% меди. Масса второго сплава больше массы первого на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава.

Спрятать решение

Решение.

Пусть масса первого сплава x кг. Тогда масса второго сплава (x + 4) кг, а третьего — (2x + 4) кг. В первом сплаве содержится 0,05x кг меди, а во втором — 0,11(x + 4) кг. Поскольку в третьем сплаве содержится 0,1(2x + 4) кг меди, составим и решим уравнение:

0,05х + 0,11(х + 4)=0,1(2х + 4)

0,04х = 0,04

х = 1

2 ∙1 + 4 = 6

Масса третьего сплава равна 6 кг.

 

Ответ:6 кг.

3) Даны два куска с различным содержанием олова. Первый, массой 300г, содержит 20% олова. Второй, массой 200г, содержит 40% олова. Сколько процентов олова будет содержать сплав, полученный из этих кусков?

Решение.

300 • 20 : 100 = 60 (г) - олова в первом сплаве, 200 • 40 : 100 = 80 (г) - олова во втором сплаве ;

60 + 80 = 140 (г) - олова в двух сплавах вместе;

200 + 300 = 500 (г) – масса куска после сплавления;

140 : 500 • 100 = 28% -содержится олова после сплавления.

Ответ 28%

4) В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?



Решение.

Весь раствор: 5 л – 100%

Вещество: х л – 12%

Откуда х = 5· 12 /100 = 0,6 л – вещества в растворе

Весь раствор: 5 + 7 л – 100%

Вещество: 0,6 л – у%

Откуда у = 0,6 · 100 /12 = 5%

ответ 5%

5) )Смешали 30%-й раствор соляной кислоты с 10%- ым раствором и получили 600 г 15%-го раствора. Сколько граммов каждого раствора надо взять?

Решение:

Обозначим x массу первого раствора, тогда масса второго (600 - x).

Составим уравнение: 0,3x + 0,1* (600 - x) = 600 * 0,15

0,3х + 60 - 0,1х = 90

0,2х = 30

x = 150 600 - 150 = 450 г

Ответ: 150г масса 1 раствора, 450г масса 2 раствора

6) Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Решение.

Первый раствор: 4 л – 100%

Вещество: х л – 15%

Откуда х = 15· 4 /100 = 0,6 л – вещества в I растворе

Второй раствор: 6 л – 100%

Вещество: у л – 25%

Откуда у = 25 · 6 /100 = 1,5 л – вещества во II растворе

Третий раствор: 10 л – 100%

Вещество: 0,6 + 1,5 л – z%

Откуда z = 2,1 · 100 /10 = 21% – концентрация нового раствора

Ответ 21%

7) Имеется два сплава. Первый содержит 10% никеля, второй − 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Решение.

Первый сплав: х кг – 100%

Никель: ? кг – 10%

Откуда ? = 10 · х /100 = 0,1х кг – никеля в I сплаве.

Второй сплав: 200 – х кг – 100%

Никель: ? кг – 30%

Откуда ? = 30 · (200 – х) /100 = 0,3(200 – х) кг – никеля во II сплаве.

Третий сплав: 200 кг – 100%

Никель: 0,1х + 0,3(200 – х) кг – 25%

Получаем уравнение: 200 · 25 = (0,1х + 0,3(200 – х)) · 100, откуда х = 50 кг – никеля в I сплаве; 200 – 50 = 150 кг – масса второго сплава; значит, масса первого сплава на 150 – 50 = 100 кг меньше.

Ответ 100кг

8) Первый сплав содержит 10% меди, второй − 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Решение.

Первый сплав: х кг – 100%

Медь: ? кг – 10%

Откуда ? = 10 · х /100 = 0,1х кг – меди в I сплаве.

Второй сплав: х + 3 кг – 100%

Медь: ? кг – 40%

Откуда ? = 40 · (х + 3) /100 = 0,4(х + 3) кг – меди во II сплаве.

Третий сплав: 2х + 3 кг – 100%

Медь: 0,1х + 0,4(х + 3) кг – 30%

Получаем уравнение: (2х + 3) · 30 = (0,1х + 0,4(х + 3)) · 100,

откуда х = 3 кг – масса I сплава;

тогда 2 · 3 + 3 = 9 кг – масса третьего сплава.

Ответ 9кг

9) Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?

Решение.

Первый раствор: х кг – 100%

Кислота: ? кг – 30%

Откуда ? = 30 · х /100 = 0,3х кг – кислоты в I растворе.

Второй раствор: у кг – 100%

Кислота: ? кг – 60%

Откуда ? = 60 · у /100 = 0,6у кг – кислоты во II растворе.

Третий раствор: х + у + 10 кг – 100%

Кислота: 0,3х + 0,6у кг – 36%

Получаем 1-ое уравнение: (х + у + 10) · 36 = (0,3х + 0,6у) · 100.

Четвертый раствор: 10 кг – 100%

Кислота: ? кг – 50%

Откуда ? = 50 · 10 /100 = 5 кг – кислоты в IV растворе.

Пятый раствор: х + у + 10 кг – 100%

Кислота: 0,3х + 0,6у + 5 кг – 41%

Получаем 2-ое уравнение: (х + у + 10) · 41 = (0,3х + 0,6у + 5) · 100.

С оставим систему уравнений:





Ответ 60

10) Имеется два сосуда. Первый содержит 30 кг, а второй − 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Решение.

Первый раствор: 30 кг – 100%

Кислота: ? кг – х%

Откуда ? = 30 · х /100 = 0,3х кг – кислоты в I растворе.

Второй раствор: 20 кг – 100%

Кислота: ? кг – у%

Откуда ? = 20 · у /100 = 0,2у кг – кислоты во II растворе.

Третий раствор: 50 кг – 100%

Кислота: 0,3х + 0,2у кг – 68%

Получаем 1-ое уравнение: (0,3х + 0,2у) · 100 = 50 · 68.

Четвертый раствор: 20 кг – 100%

Кислота: 0,1х + 0,1у кг – 70%

Получаем 2-ое уравнение: (0,1х + 0,1у) · 100 = 20 · 70.

Составим систему уравнений:

0,3 · 60 = 18 кг – кислоты в первом сосуде.

Ответ 18кг




Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 9 класс.
Урок соответствует ФГОС

Скачать
Подготовка к ОГЭ "Решение задач на смеси и сплавы"

Автор: Храмцова Фаина Алексеевна

Дата: 24.06.2021

Номер свидетельства: 584030

Похожие файлы

object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(160) "Мастер – класс по теме "Подготовка к ОГЭ. Решение задач на смеси, сплавы и концентрацию"."
    ["seo_title"] => string(80) "mastier_klass_po_tiemie_podghotovka_k_oge_rieshieniie_zadach_na_smiesi_splavy_i_"
    ["file_id"] => string(6) "441581"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1512064546"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(272) "Технологическая карта и конспект интегрированного урока в 9 классе по теме: Систематизация и обобщение знаний по решению задач на растворы и сплавы."
    ["seo_title"] => string(172) "tiekhnologhichieskaia-karta-i-konspiekt-intieghrirovannogho-uroka-v-9-klassie-po-tiemie-sistiematizatsiia-i-obobshchieniie-znanii-po-rieshieniiu-zadach-na-rastvory-i-splavy"
    ["file_id"] => string(6) "300582"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1456759801"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(95) "Элективный курс по математике для подготовки к ОГЭ. "
    ["seo_title"] => string(55) "eliektivnyi-kurs-po-matiematikie-dlia-podghotovki-k-oge"
    ["file_id"] => string(6) "123257"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1414435683"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(78) "Подготовка к ОГЭ "РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ" "
    ["seo_title"] => string(48) "podghotovka-k-oge-rieshieniie-tiekstovykh-zadach"
    ["file_id"] => string(6) "166514"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1422969658"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1190 руб.
1980 руб.
1160 руб.
1940 руб.
1240 руб.
2070 руб.
1600 руб.
2660 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства