kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

План урока по геометрии "Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника"

Нажмите, чтобы узнать подробности

План урока 

Тема: Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника.

Цели: ввести понятие перпендикуляра к прямой и доказать теорему о перпендикуляре; ввести понятия медианы, биссектрисы и высоты треугольника и научить учащихся их строить.

Задачи:

а) ввести понятие перпендикуляра к прямой и доказать теорему о перпендикуляре; ввести понятия медианы, биссектрисы и высоты треугольника и научить учащихся их строить.

б) развивать приемы логического мышления (сравнивать, обобщать), правильно формулировать и излагать мысли, умение анализировать факты и делать выводы; создать условия для развития познавательного интереса к математике;

в) воспитывать математическую культуру и речь.

Наглядные пособия: таблица «Медианы, биссектрисы и высоты треугольника»; транспортиры; прямоугольные треугольники.

Ход урока

  1. Организационный момент
  2. Актуализация опорных знаний

-  Для начала нам нужно вспомнить некоторые геометрические фигуры. Посмотрите и скажите, какие геометрические фигуры изображены? Какими особенностями обладают эти фигуры?  (Рисунок 1)

Какие геометрические фигуры изображены?

III. Изучение нового материала.

1. Введение понятия перпендикуляра к прямой (рис. 55).

Учащиеся должны уяснить, что перпендикуляр АН, проведенный из точки А к прямой а, — это такой отрезок, для которого выполнены следующие два условия: 1) прямая АН перпендикулярна к прямой a (АН ⊥ а); 2) А ∉ а, Н ∈ а.

2. Выполнение практического задания 100.

3. Доказательство теоремы о перпендикуляре к прямой проводит сам учитель по рисункам 56, 57 без записи доказательства этой теоремы в тетрадях.

4. Решение задачи № 105 (устно по готовому чертежу).

5. Введение понятия медианы треугольника (использовать таблицу «Медианы, биссектрисы и высоты треугольника) и построение учащимися медиан треугольника (рис. 59).

6. Введение понятия биссектрисы треугольника и построение учащимися биссектрис углов треугольника с помощью транспортира (рис. 60).

Обратить внимание учащихся на различие между биссектрисой угла (луч, делящий угол на два равных угла) и биссектрисой треугольника (отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны).

7. Введение понятия высоты треугольника (использовать таблицу) и построение учащимися высот в остроугольном, прямоугольном и тупоугольном треугольниках с помощью прямоугольных треугольников (рис. 61 и 62).

У учащихся вызывает затруднение проведение высоты из вершины острого угла в тупоугольном треугольнике, поэтому учитель объясняет построение высот в различных тупоугольных треугольниках.

 IV. Практическая работа.

Для закрепления навыков построения медиан, биссектрис и высот треугольника учащиеся выполняют практические задания № 101, 102 и 103, а учитель просматривает выполняемые учащимися построения и оказывает необходимую помощь.

 VI. Итоги урока.

Выяснить, какими свойствами обладают медианы, биссектрисы и высоты треугольника.

Домашнее задание: изучить пункты 16 и 17; ответить на вопросы 5-9 на с. 50; выполнить на отдельных листочках практические задания № 101, 102 и 103 и сдать учителю на проверку.

Решить задачи:

1. АС - биссектриса ∠A треугольника АВД. Докажите, что ΔВAС = ΔДАС.

2. В треугольнике АСД проведены медианы АЕ, СВ и ДF. Длины отрезков AF, ВД и СЕ соответственно равны 4 см, 3 см и 2 см. Найдите периметр треугольника АСД.

3. DN - высота треугольника MNK; МД = ДК.

Доказать, что ΔМNД = ΔKNД.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«План урока по геометрии "Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника"»

План урока 

Тема: Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника.

Цели: ввести понятие перпендикуляра к прямой и доказать теорему о перпендикуляре; ввести понятия медианы, биссектрисы и высоты треугольника и научить учащихся их строить.

Задачи:

а) ввести понятие перпендикуляра к прямой и доказать теорему о перпендикуляре; ввести понятия медианы, биссектрисы и высоты треугольника и научить учащихся их строить.

б) развивать приемы логического мышления (сравнивать, обобщать), правильно формулировать и излагать мысли, умение анализировать факты и делать выводы; создать условия для развития познавательного интереса к математике;

в) воспитывать математическую культуру и речь.

Наглядные пособия: таблица «Медианы, биссектрисы и высоты треугольника»; транспортиры; прямоугольные треугольники.

Ход урока

  1. Организационный момент

  2. Актуализация опорных знаний

- Для начала нам нужно вспомнить некоторые геометрические фигуры. Посмотрите и скажите, какие геометрические фигуры изображены? Какими особенностями обладают эти фигуры? (Рисунок 1)

Какие геометрические фигуры изображены?

 

III. Изучение нового материала.

1. Введение понятия перпендикуляра к прямой (рис. 55).

Учащиеся должны уяснить, что перпендикуляр АН, проведенный из точки А к прямой а, — это такой отрезок, для которого выполнены следующие два условия: 1) прямая АН перпендикулярна к прямой a (АН ⊥ а); 2) А ∉ а, Н ∈ а.

2. Выполнение практического задания 100.

3. Доказательство теоремы о перпендикуляре к прямой проводит сам учитель по рисункам 56, 57 без записи доказательства этой теоремы в тетрадях.

4. Решение задачи № 105 (устно по готовому чертежу).

5. Введение понятия медианы треугольника (использовать таблицу «Медианы, биссектрисы и высоты треугольника) и построение учащимися медиан треугольника (рис. 59).

6. Введение понятия биссектрисы треугольника и построение учащимися биссектрис углов треугольника с помощью транспортира (рис. 60).

Обратить внимание учащихся на различие между биссектрисой угла (луч, делящий угол на два равных угла) и биссектрисой треугольника (отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны).

7. Введение понятия высоты треугольника (использовать таблицу) и построение учащимися высот в остроугольном, прямоугольном и тупоугольном треугольниках с помощью прямоугольных треугольников (рис. 61 и 62).

У учащихся вызывает затруднение проведение высоты из вершины острого угла в тупоугольном треугольнике, поэтому учитель объясняет построение высот в различных тупоугольных треугольниках.

 IV. Практическая работа.

Для закрепления навыков построения медиан, биссектрис и высот треугольника учащиеся выполняют практические задания № 101, 102 и 103, а учитель просматривает выполняемые учащимися построения и оказывает необходимую помощь.

 VI. Итоги урока.

Выяснить, какими свойствами обладают медианы, биссектрисы и высоты треугольника.

Домашнее задание: изучить пункты 16 и 17; ответить на вопросы 5-9 на с. 50; выполнить на отдельных листочках практические задания № 101, 102 и 103 и сдать учителю на проверку.

Решить задачи:

1. АС - биссектриса ∠A треугольника АВД. Докажите, что ΔВAС = ΔДАС.

2. В треугольнике АСД проведены медианы АЕ, СВ и ДF. Длины отрезков AF, ВД и СЕ соответственно равны 4 см, 3 см и 2 см. Найдите периметр треугольника АСД.

3. DN - высота треугольника MNK; МД = ДК.

Доказать, что ΔМNД = ΔKNД.




Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 7 класс

Автор: Боровский Вадим Николаевич

Дата: 18.01.2016

Номер свидетельства: 278623

Похожие файлы

object(ArrayObject)#862 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(85) "Конспект урока геометрии на тему "Треугольник""
    ["seo_title"] => string(45) "konspiekturokaghieomietriinatiemutrieugholnik"
    ["file_id"] => string(6) "299385"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1456505518"
  }
}
object(ArrayObject)#884 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(125) "конспект урока в  7 класс "Медиана, высота, биссектриса треугольника" "
    ["seo_title"] => string(69) "konspiekt-uroka-v-7-klass-miediana-vysota-bissiektrisa-trieughol-nika"
    ["file_id"] => string(6) "165068"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1422736655"
  }
}
object(ArrayObject)#862 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(175) "Синус, косинус, тангенс, котангенс острого  угла прямоугольного треугольника. Геометрия 8 класс "
    ["seo_title"] => string(104) "sinus-kosinus-tanghiens-kotanghiens-ostrogho-ughla-priamoughol-nogho-trieughol-nika-gieomietriia-8-klass"
    ["file_id"] => string(6) "186069"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1426269421"
  }
}
object(ArrayObject)#884 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(149) "Конспект урока "Применение признаков равенства треугольников при решении задач" "
    ["seo_title"] => string(88) "konspiekt-uroka-primienieniie-priznakov-ravienstva-trieughol-nikov-pri-rieshienii-zadach"
    ["file_id"] => string(6) "102536"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1402512525"
  }
}
object(ArrayObject)#862 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(208) "Конспект урока по геометрии 8 класса по теме  "Синус, косинус и тангенс острого угла  прямоугольного треугольника" "
    ["seo_title"] => string(124) "konspiekt-uroka-po-ghieomietrii-8-klassa-po-tiemie-sinus-kosinus-i-tanghiens-ostrogho-ughla-priamoughol-nogho-trieughol-nika"
    ["file_id"] => string(6) "186082"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1426270225"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1750 руб.
2500 руб.
1650 руб.
2350 руб.
1850 руб.
2640 руб.
1310 руб.
1870 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства