kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

НАХОЖДЕНИЕ КОРНЕЙ КВАДРАТНОГО ТРЕХЧЛЕНА

Нажмите, чтобы узнать подробности

Цели: ввести понятие квадратичного трехчлена и его корней; формировать умение находить корни квадратного трехчлена.

Ход урока

I. Организационный момент.

II. Устная работа.

Какие из чисел: –2; –1; 1; 2  – являются корнями уравнений?

а) 8х + 16 = 0;                    в) х2 + 3х – 4 = 0;

б) 5х2 – 5 = 0;                     г) х3 – 3х – 2 = 0.

III. Объяснение нового материала.

Объяснение нового материала проводить по следующей  с х е м е:

1) Ввести понятие корня многочлена.

2) Ввести понятие квадратного трехчлена и его корней.

3) Разобрать вопрос о возможном количестве корней квадратного трехчлена.

Вопрос о выделении квадрата двучлена из квадратного трехчлена лучше разобрать на следующем уроке.

На каждом этапе объяснения нового материала необходимо предлагать учащимся устное задание на проверку усвоения основных моментов теории.

З а д а н и е  1. Какие из чисел: –1; 1; ; 0  – являются корнями многочлена х4 + 2х2 – 3?

З а д а н и е  2. Какие из следующих многочленов являются квадратными трехчленами?

1) 2х2 + 5х – 1;                   6) х2 – х – ;

2) 2х – ;                          7) 3 – 4х + х2;

3) 4х2 + 2х + х3;                  8) х + 4х2;

4) 3х2 – ;                         9)  + 3х – 6;

5) 5х2 – 3х;                         10) 7х2.

Какие из квадратных трёхчленов имеют корень 0?

З а д а н и е  3. Может ли квадратный трехчлен иметь три корня? Почему? Сколько корней имеет квадратный трехчлен х2 + х – 5?

IV. Формирование умений и навыков.

Упражнения:

1. № 55, № 56, № 58.

2. № 59 (а, в, д), № 60 (а, в).

3. № 61.

В этом задании не нужно искать корни квадратных трехчленов. Достаточно найти их дискриминант и ответить на поставленный вопрос.

а) 5х2 – 8х + 3 = 0;

    D1 = 16 – 15 = 1;

    D1 > 0, значит, данный квадратный трехчлен имеет два корня.

б) 9х2 + 6х + 1 = 0;

    D1 = 9 – 9 = 0;

    D1 = 0, значит, квадратный трехчлен имеет один корень.

в) –7х2 + 6х – 2 = 0;

    7х2 – 6х + 2 = 0;

    D1 = 9 – 14 = –5;

    D1 < 0, значит, квадратный трехчлен не имеет корней.

Если останется время, можно выполнить № 63.

Р е ш е н и е

Пусть ax2 + bx + c – данный квадратный трехчлен. Поскольку a + b +
+ c = 0, то один из корней этого трехчлена равен 1. По теореме Виета второй корень равен . Согласно условию, с = 4а, поэтому второй корень данного квадратного трехчлена равен .

О т в е т: 1 и 4.

V. Итоги урока.

В о п р о с ы   у ч а щ и м с я:

– Что такое корень многочлена?

– Какой многочлен называют квадратным трехчленом?

– Как найти корни квадратного трехчлена?

– Что такое дискриминант квадратного трехчлена?

– Сколько  корней  может  иметь  квадратный  трехчлен?  От  чего  это зависит?

Домашнее задание: № 57, № 59 (б, г, е), № 60 (б, г), № 62.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«НАХОЖДЕНИЕ КОРНЕЙ КВАДРАТНОГО ТРЕХЧЛЕНА »

Нахождение корней квадратного трехчлена

Цели: ввести понятие квадратичного трехчлена и его корней; формировать умение находить корни квадратного трехчлена.

Ход урока

I. Организационный момент.

II. Устная работа.

Какие из чисел: –2; –1; 1; 2 – являются корнями уравнений?

а) 8х + 16 = 0; в) х2 + 3х – 4 = 0;

б) 5х2 – 5 = 0; г) х3 – 3х – 2 = 0.

III. Объяснение нового материала.

Объяснение нового материала проводить по следующей с х е м е:

1) Ввести понятие корня многочлена.

2) Ввести понятие квадратного трехчлена и его корней.

3) Разобрать вопрос о возможном количестве корней квадратного трехчлена.

Вопрос о выделении квадрата двучлена из квадратного трехчлена лучше разобрать на следующем уроке.

На каждом этапе объяснения нового материала необходимо предлагать учащимся устное задание на проверку усвоения основных моментов теории.

З а д а н и е 1. Какие из чисел: –1; 1; ; 0 – являются корнями многочлена х4 + 2х2 – 3?

З а д а н и е 2. Какие из следующих многочленов являются квадратными трехчленами?

1) 2х2 + 5х – 1; 6) х2х;

2) 2х; 7) 3 – 4х + х2;

3) 4х2 + 2х + х3; 8) х + 4х2;

4) 3х2; 9) + 3х – 6;

5) 5х2 – 3х; 10) 7х2.

Какие из квадратных трёхчленов имеют корень 0?

З а д а н и е 3. Может ли квадратный трехчлен иметь три корня? Почему? Сколько корней имеет квадратный трехчлен х2 + х – 5?

IV. Формирование умений и навыков.

Упражнения:

1. № 55, № 56, № 58.

2. № 59 (а, в, д), № 60 (а, в).

3. № 61.

В этом задании не нужно искать корни квадратных трехчленов. Достаточно найти их дискриминант и ответить на поставленный вопрос.

а) 5х2 – 8х + 3 = 0;

D1 = 16 – 15 = 1;

D1 0, значит, данный квадратный трехчлен имеет два корня.

б) 9х2 + 6х + 1 = 0;

D1 = 9 – 9 = 0;

D1 = 0, значит, квадратный трехчлен имеет один корень.

в) –7х2 + 6х – 2 = 0;

7х2 – 6х + 2 = 0;

D1 = 9 – 14 = –5;

D1

Если останется время, можно выполнить № 63.

Р е ш е н и е

Пусть ax2 + bx + c – данный квадратный трехчлен. Поскольку a + b +
+ c = 0, то один из корней этого трехчлена равен 1. По теореме Виета второй корень равен . Согласно условию, с = 4а, поэтому второй корень данного квадратного трехчлена равен .

О т в е т: 1 и 4.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Что такое корень многочлена?

– Какой многочлен называют квадратным трехчленом?

– Как найти корни квадратного трехчлена?

– Что такое дискриминант квадратного трехчлена?

– Сколько корней может иметь квадратный трехчлен? От чего это зависит?

Домашнее задание: № 57, № 59 (б, г, е), № 60 (б, г), № 62.






Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 8 класс

Скачать
НАХОЖДЕНИЕ КОРНЕЙ КВАДРАТНОГО ТРЕХЧЛЕНА

Автор: Хамзин Аскар Ашкенович

Дата: 16.02.2015

Номер свидетельства: 173969

Похожие файлы

object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(176) "Разработка урока по алгебре в 8 классе На тему: «Разложение квадратного трехчлена на множители»."
    ["seo_title"] => string(94) "razrabotkaurokapoalghiebriev8klassienatiemurazlozhieniiekvadratnoghotriekhchlienanamnozhitieli"
    ["file_id"] => string(6) "296396"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1455989109"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(87) "Разложение на множители квадратного трёхчлена "
    ["seo_title"] => string(55) "razlozhieniie-na-mnozhitieli-kvadratnogho-triokhchliena"
    ["file_id"] => string(6) "116134"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1412266842"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(125) "Программа спецкурса по математике " Математика абитуриенту",11 класс "
    ["seo_title"] => string(72) "proghramma-spietskursa-po-matiematikie-matiematika-abituriientu-11-klass"
    ["file_id"] => string(6) "118819"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1413266581"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(107) "Программа элективного курса "Решение задач с параметрами" "
    ["seo_title"] => string(64) "proghramma-eliektivnogho-kursa-rieshieniie-zadach-s-paramietrami"
    ["file_id"] => string(6) "157156"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1421562791"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(80) "Рабочая программа по алгебре для 7-9 классов "
    ["seo_title"] => string(51) "rabochaia-proghramma-po-alghiebrie-dlia-7-9-klassov"
    ["file_id"] => string(6) "228291"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1441214332"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства