Цели: дать понятие доли, обыкновенной дроби, числителя, знаменателя и их записи; учить читать и записывать обыкновенные дроби и применять к решению задач; дать понятие половина, треть и четверть; развивать речь, логическое мышление, память, внимание.
Оборудование: компьютер, проектор, геометрические фигуры из цветного картона, ножницы, презентация к уроку, учебник “Математика” – 5 класс, Н.Я Виленкин.
Тип урока: объяснение нового материала.
Эпиграф к уроку: слайд1
Без знания дробей никто не может признаться знающим арифметику.
Цицерон, древнеримский политик и философ
Ход урока
I. Организационный момент.
Учитель: - Ребята, сегодня на уроке вы должны открыть новое знание, но как вам известно, каждое новое знание связано с тем, что мы уже изучили.
Самый первый вопрос, который изучается в курсе математики 5 класса - это натуральные числа. Мы уже знаем, что для счета предметов применяют натуральные числа. Любое натуральное число можно записывать с помощью десяти цифр: 0,1,2,3,4,5,6,7,8,9. Нуль не относят к натуральным числам.
А ведь с древних времен людям приходилось не только считать предметы (для чего требовались натуральные числа), но и измерять длину, время, площадь, вести расчеты за купленные товары. Не всегда результат измерения или стоимость товара удавалось выразить натуральным числом. Приходилось учитывать и части, доли меры.
Слайд 2. Итак, ребята, если вы верно найдете значения выражений и расположите однозначные ответы в порядке убывания, также
15х11=165 А
24х3=72 З
0х17= 0 И
125х8= 1000 К
64:32= 2 Л
51:17= 3 О
25х9х4=900 М
1000:125= 8 Д
-вычислите значения выражений и расположите их в порядке возрастания, вы узнаете тему урока.
О
27 * 2 =54
Р
2 *100 : 4 =50
Д
(46 +14) : 3 =20
И
8 * 4 * 5 =160
Б
( 76 – 36) *3 =120
II. Сообщение темы урока.
Слайд 3. “Доли. Обыкновенные дроби”.
III. Объяснение нового материала.
Что такое дробь? Как записывают дроби?
В русском языке слово «дробь» появилось в 8 веке, оно происходит от глагола «дробить» - разбивать, ломать на части.
В первых учебниках математики (в XVII веке) дроби так и назывались - «ломаные числа» Современное обозначение дробей берет свое начало в Древней Индии. Долгое время дроби считались самым трудным разделом математики. У немцев даже сложилась поговорка “попасть в дроби”, что означает “попасть в трудное положение”.
Но сегодня мы с вами на уроке докажем, что дроби не смогут нас поставить в трудное положение.
Вы согласны со мной? Тогда внимание на экран!
Как записывают дроби? Слайд 4-5
Равные части арбуза – это доли. Арбуз разделили на 6 долей, то одна доля – “одна шестая арбуза”, а остальная часть – 5/6. Слайд 6.
Записи вида 5/6 называют обыкновенными дробями. Числитель дроби – 5, знаменатель дроби – 6. Знаменатель дроби показывает на сколько долей делят, а числитель дроби – сколько таких долей взято. Слайд 7-8
Дроби можно изображать на координатном луче.
Длина отрезка АВ = 5см. Отрезок АВ разделили на 5 равных частей, 1 см – 1/5 отрезка АВ.
Слайд 9-10-11 Половина, треть, четверть
Самая известная доля – это, конечно, половина. Слова с приставкой «пол» можно услышать часто: полчаса, полкилометра… Разделили целое на две части – «половина». Долю 1/2 называют половина.
Название доли зависит от того, на сколько равных частей разделили единицу. Разделили на три части – «треть». Долю 1/3 называют «треть».
Если целое разделили на 4 части, то долю 1/4 называют «четверть».
Слайд 12 Математический диктант. Запишите в виде обыкновенной дроби.
Две седьмых
Четыре девятых
Одна сотая
Шесть восьмых
Три двадцать пятых
Половина
Слайды 13-32 Игра “Доли”.
Слайд 33 Работа с ножницами.
У каждого из учащихся на столе квадрат из картона со стороной 4 см. Задание: разрезать квадрат на четыре равные доли любым способом.
Слайды 34
IV. Актуализация полученных знаний.
Задача 1. Площадь поля – 16 км² Засеяли пшеницей - 11 км² , рожью - 5 км² . Какая часть поля засеяна пшеницей и какая рожью?
Задача 2. Человек прошел 2/3 дороги. Какова длина всей дороги, если он прошел 4 км?
Задача 3. Велосипедист проехал 2/9 дороги. Какова длина дороги, если он проехал 40 км?
Задача 4. На базу в Антарктиду доставили 22 собаки. Из 5/11 всех собак составили упряжку, на которой отправились в поход. Сколько собак не вошло в упряжку?
Слайды 35
Учитель: А сейчас, ребята, решая задачи, мы поиграем в «Поле чудес». Верному ответу соответствует нужная буква, в результате получится слово.
Торт разрезан на 9 кусков. Оля съела 2 из них. Какую часть торта съела Оля? (2/9).
В вазе лежат 13 фруктов, из них 5 бананов и 4 апельсина. Какую часть составляют бананы от всех фруктов? (5/13).
Золушке высыпали 100 зерен пшена и 99 горошин. Какую часть от всех зерен составляют горошины? (99/199).
У бабушки было 3 собаки и 5 попугаев. Ей принесли еще 2 котят. Какую часть составляют попугаи от всех домашних любимцев бабушки? (5/10).
(Ответ: НОТА).
Учитель: Примером фантастического применения дробей является нотная запись в музыке. Нотки бывают целые, половинные, четвертные, восьмые. Используя ноты, можно записать любое музыкальное произведение.
И пусть музыка поможет вам справиться с творческим (интересным) заданием.
Слайд 36. Творческое задание «Корабль».
Различные геометрические фигуры (прямоугольники, круги, треугольник) из цветного картона, разрезать на части. Из этих частей построить корабль.
Прямоугольник, разрезанный на 8 частей – взять из них 6 долей (6/8). Это корпус корабля.
Прямоугольник, разрезанный на 4 части – взять из них 2 доли (2/4). Это мачта.
2 круга, разрезанные на половинки – взять из них 3 доли (3/2). Это паруса.
Один целый треугольник. Это встречный парус.
Правильный шестиугольник, разрезанный на 6 частей – взять 1 долю (1/6). Это флаг.
Три круга, каждый из которых разрезан на 4 части – взять 3/4 от каждого круга. Это волны.
На следующем уроке мы продолжим наше путешествие в удивительную математическую страну под названием «Обыкновенные дроби» на корабле. Я желаю Вам успехов!.
V. Итоги урока.
- Расскажите, какие открытия сделали сегодня?
- Что узнали нового?
- Что называем дробью? Как записывают дробь?
- Что обозначает дробная черта?
- Как называются числа дроби? Что показывает числитель дроби? Что показывает знаменатель дроби?
- Приведите примеры дробей.
Слайд 37.
VI. Домашнее задание
п. 23 читать, ответить на вопросы (устно), № 926, 928 – решить.