Просмотр содержимого документа
«Конспект урока математики в 5 классе "Приведение дробей к общему знаменателю"»
5 класс Урок № 90 Дата____________
ТЕМА:Приведение дробей к общему знаменателю.
Цель урока: вывести правило приведения дробей к общему знаменателю, формировать умение приводить дроби к наименьшему общему знаменателю. Развивать внимание, память, логическое мышление, умение использовать собственный опыт. Воспитывать культуру математической речи и записей, культуру поведения на уроке, аккуратность во время оформления работ.
Тип урока: комбинированный
Планируемые образовательные результаты:
Предметные: - знать основное свойство дроби, алгоритм приведения дробей к общему знаменателю; уметь находить НОК чисел, использовать основное свойство дроби для приведения дробей к общему знаменателю
Личностные: видеть значение изучаемого материала в жизни человека, для познания окружающего мира, уважать мнение одноклассников, понимать причины успеха (неуспеха) в учебе;
Метапредметные:
познавательные УУД: развивать основы логического и алгоритмического мышления; расширять кругозор учащихся; учить произвольно и осознанно владеть приемами решения задач.
регулятивные УУД: формировать способность к мобилизации сил и энергии, к волевому усилию в преодолении препятствий, к осознанию уровня и качества усвоения результата.
коммуникативные УУД: учить строить высказывания, аргументировано доказывать свою точку зрения.
личностные УУД: формировать устойчивую мотивацию к изучению и закреплению учебного материала; формировать навыки самоанализа и самоконтроля, взаимоконтроля.
Методы:
по источникам знаний: словесные, наглядные;
по степени взаимодействия учитель-ученик: эвристическая беседа;
относительно дидактических задач: подготовка к восприятию;
относительно характера познавательной деятельности: репродуктивный, частично-поисковый.
Формы работы учащихся: Фронтальная, парная, индивидуальная, групповая.
Оборудование: учебник математика 5 класс С.М.Никольский, тетрадь, доска, разноцветный мел
Ход урока
I . Организационный момент
II. Проверка домашнего задания
В это время двое обучающихся на доске показывают решение домашнего задания)
Устная разминка (остальная часть класса)
1.
- На сколько равных квадратов разделен прямоугольник?
- Сколько квадратов закрашено?
- Какая часть прямоугольника закрашена?
- Выразите закрашенную часть разными дробями: = = = = =…
(В это время двое обучающихся на доске показывают решение домашнего задания).
Какой вывод можно сделать ?
Итак, одну и ту же дробь можно выразить разными дробями.
- Чем пользуемся при выполнении этого задания? (основным свойством дроби)
3. Сократите дробь
, , , , , , .
- Что значит сократить дробь?
Проверка домашнего задания(по записям на доске самопроверка)
III. Актуализация знаний.
Задание №1. Вместо * подставить число, чтобы равенство оказалось верным:
= = = =
- Как вы получили дробь равную данной?
Задание №2. Выберите из чисел 21, 40, 68, 35, 10, 24, 38, 78 те, которые могут быть знаменателем дроби:
а) ; б) .
- Почему вы выбрали именно эти числа? Как называются эти числа? (кратные числу 8, кратные числу 3).
- Какой вывод можно сделать? (учащиеся самостоятельно делают вывод)
Вспомним:
- Какое число называется кратным числу 7; числу а?
- Что называется общим кратным чисел a и b?
- Что называется наименьшим общим кратным чисел а и b?
Задание №3 (устно) . Найдите:
НОК (3.4) НОК (4;16) НОК (9,12)
НОК (5,6) НОК (27,9) НОК (10,15)
НОК (10,7) НОК (24,6) НОК (6,8)
НОК (2,9) НОК (56,8) НОК (15,20)
- Что характерно для чисел из 1-го столбца? (эти числа взамно простые)
- Как найти НОК взаимно простых чисел?
- Какой вывод можно сделать для чисел 2-го и 3-его столбца?
IV. Физминутка
Мы работали отлично,
Отдохнуть не прочь сейчас,
И зарядка к нам привычно
На урок приходит в класс.
РАЗ - подняться, потянуться,
ДВА – согнуться, разогнуться,
ТРИ – в ладоши 3 хлопка, головою 3 кивка,
На ЧЕТЫРЕ – руки шире,
ПЯТЬ – руками помахать,
ШЕСТЬ – за парту тихо сесть.
V. Объяснение новой темы
Какую тему изучали на предыдущем уроке?
Сформулируйте основное свойство дроби.
Какие преобразования дробей мы научились выполнять, применяя основное свойство дроби?
Прочитайте тему урока. Как вы думаете, чему мы должны научиться сегодня на уроке? Поставьте учебную задачу (научиться приводить дроби к общему знаменателю, к наименьшему общему кратному).
Сравните дроби и ; и ; и .
- Что общего у пар этих дробей? (одинаковые знаменатели)
- А как сравнить дроби и ? Попробуйте разобраться в этом вопросе, работая парами. Сделайте вывод.
Дробь можно привести к знаменателю 6,9,12,15,18,21,24,27,30, 45, …
Дробь можно привести к знаменателю 10,15,20,25,30,35, 40, 45,…
- Что вы увидели? (у дробей есть одинаковые знаменатели 15,30,45, …)
Итак, дроби и можно привести к знаменателю 15, 30, 45,…., т.е. к общему знаменателю.
Например,
- к знаменателю 30: = , = .
, т.е. к общему знаменателю (общее кратное знаменателей данных дробей)
- к знаменателю 45: = , =
- к знаменателю 15: = , = , т.е. к наименьшему общему знаменателю.
- К какому знаменателю удобнее приводить дроби?
- Сделайте вывод как привести дроби к наименьшему общему знаменателю.