kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Геометрическое применение производной

Нажмите, чтобы узнать подробности

Поставим своей задачей определить скорость, с кото­рой изменяется величина у в зависимости от изменения величины х. Так как нас интересуют всевозможные слу­чаи, то мы не будем придавать определенного физического смысла зависимости y=f(x), т.е. будем рассматривать величины х и у как математические. Рассмотрим функцию y=f(x), непрерывную на от­резке [а, b]. Возьмем два числа на этом отрезке: х и х+?x; первое, х, в ходе всего рассуждения считаем неизменным, ?x — его приращением. Приращение ?x; ар­гумента обусловливает приращение ?у функции, причем: ?y=f(x+?x)-f(x). (I) Найдем отношение приращения ?у функции к прира­щению ?x аргумента: ?у/?x=(f(x+?x)-f(x))/ ?x. (II) По предыдущему, это отношение представляет собой среднюю скорость изменения у относительно х на отрезке [x, x+?x]. Будем теперь неограниченно приближать ?x к нулю. Для непрерывной функции f(x) стремление ?x к нулю вызывает стремление к нулю ?у, отношение (II) становится при этом отношением бесконечно малых, вообще величиной переменной. Пусть это переменное отношение (II) имеет вполне определенный предел(утверждать, что определенный предел отношения ?x/?у всегда существует нельзя), обозначим его символом f '(х).

lim((f(x+?x)-f(x))/ ?x)=f’(x)

?x→0

В данной работе представлена теория и приведены примеры решения задач на применение производной.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Геометрическое применение производной »

Тема «Геометрическое применение производной»

Производная функции y = y(x) при данном значении аргумента х = х0 равна угловому коэффициенту касательной, проведенной к графику этой функции в точке с абсциссой х0 и ординатой y0 = y(x0)

y'(x0) = tg (1)


Уравнение касательной к графику функции y = y(x) в точке М00; у0) имеет вид: у – у0 = y'(x0)(х – х0) (2)

Если y(x) имеет при х = х0 бесконечную производную, то уравнение касательной таково: х = х0

Уравнение нормали, т. е. прямой, проходящей через точку касания М00; у0) перпендикулярно касательной, записывается в виде

у – у0 =(х – х0) (3)

Примеры.

1. Составить уравнение касательной и нормали к параболе

у = 2х2-6х+3 в точке М0(1; -1)

Решение: Найдем производную функции у = 2х2-6х+3 при х =1. Имеем

у' = 4х – 6, откуда у'(1) = -2.

Воспользовавшись уравнением касательной к графику функции, получим искомое уравнение: у – (-1) = -2(х - 1) или 2х + у – 1= 0.

Уравнение нормали получим, используя уравнение (3)

у + 1 = (х – 1), или х – 2у – 3 = 0



2. Составить уравнения касательной и нормали (решить самостоятельно):



а) к гиперболе у = в точке А(2;3)



б) к кривой у = х3 + 4х2 – 1 в точке с абсциссой х0 = -1



в) к параболе у = х2 – 4х + 4 в точках, ординаты которых равны единице.

Тема «Механические приложения производной»

Производная от функции y = y(x), вычисленная при значении аргумента х = х0, представляет собой скорость изменения этой функции относительно независимой переменной х в точке х = х0.

В частности, если зависимость между пройденным путем s и временем t при прямолинейном движении выражается формулой s = s(t), то скорость движения в любой момент времени t есть (т. е. скорость изменения скорости) есть

Пример.

1. Точка движется прямолинейно по закону s = (s выражается в метрах, - в секундах). Найти скорость и ускорение движения через 1 с после начала движения.

Решение:

Скорость прямолинейного движения равна производной пути по времени:

v(t) = = , откуда v(1) = 4 (м/с)

Ускорение прямолинейного движения равно второй производной пути по времени: a(t) = = 2t + 4.

Следовательно, a(1) = 6(м/с2)

Решить самостоятельно следующие задачи:

2. Закон прямолинейного движения точки выражается формулой

s = 1 + (s выражается в метрах, - в секундах). Найти скорость и ускорение движения в момент времени

3. Тело массой 25 кг движется прямолинейно по закону s = ln(1 + Найти кинетическую энергию тела (0.5m через 2с после начала движения.

4. Точка движется по оси абсцисс по закону x = 0,25(

(х выражается в метрах, - в секундах). В какой момент времени точка остановится?




Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 10 класс.
Урок соответствует ФГОС

Скачать
Геометрическое применение производной

Автор: Полушкина Вера Валентиновна

Дата: 20.01.2015

Номер свидетельства: 158422

Похожие файлы

object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(132) "Урок по теме:"Геометрический смысл производной. Уравнение касательной." "
    ["seo_title"] => string(76) "urok-po-tiemie-gieomietrichieskii-smysl-proizvodnoi-uravnieniie-kasatiel-noi"
    ["file_id"] => string(6) "103881"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1402644901"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(151) "« Геометрический и физический смысл производной. Применение производной» 10 класс "
    ["seo_title"] => string(86) "gieomietrichieskii-i-fizichieskii-smysl-proizvodnoi-primienieniie-proizvodnoi-10-klass"
    ["file_id"] => string(6) "102918"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1402559278"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(238) "Разработка урока алгебры и начала анализа в 10 классе "Геометрический смысл производной. Уравнение касательной к графику функции" "
    ["seo_title"] => string(139) "razrabotka-uroka-alghiebry-i-nachala-analiza-v-10-klassie-gieomietrichieskii-smysl-proizvodnoi-uravnieniie-kasatiel-noi-k-ghrafiku-funktsii"
    ["file_id"] => string(6) "124912"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1414846529"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(63) "Геометрический смысл производной2"
    ["seo_title"] => string(37) "gieomietrichieskii_smysl_proizvodnoi2"
    ["file_id"] => string(6) "420763"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1496769972"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(178) "Презентация к уроку "Геометрический смысл производной. Уравнение касательной к графику функции" "
    ["seo_title"] => string(105) "priezientatsiia-k-uroku-gieomietrichieskii-smysl-proizvodnoi-uravnieniie-kasatiel-noi-k-ghrafiku-funktsii"
    ["file_id"] => string(6) "124919"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1414847771"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства