Просмотр содержимого документа
«Такая замечательная теорема Пифагора»
Человечество осмысливает свою жизнь, жизнь предков, ход истории, в том числе развитие науки. Истоки математики находятся в Египте и Вавилонии, но их превращение в полноводный поток проходило в Древней Греции. Первым в ряду философов и математиков древности стоит Пифагор. О жизни Пифагора известно только то, что ничего нельзя утверждать наверняка. О нём написано одновременно и много и мало. Имя Пифагора обросло огромным количеством легенд. Введение.
Начало нового тысячелетия заставляется задуматься о тысячелетних минувших. Все люди оглядываются на пройденный путь, по новому осмысливают свою жизнь, жизнь своих предков, ход истории, в том числе и истории науки. Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с его теоремой. А кто он, Пифагор? Его портрет я вижу в кабинете математики, а на уроках геометрии учитель познакомил нас с теоремой Пифагора, сказав, что теорема Пифагора - одна из важнейших теорем математики, а доказательств теоремы существует несколько сотен.
А кто он, Пифагор? Для нас Пифагор (6 в. до н.э) прежде всего математик. Его именем названы улицы в некоторых городах мира. Его родина - остров Самос в Эгейском море. Письменных документов о Пифагоре Самосском не осталось, а по более поздним свидетельствам трудно восстановить подлинную картину его жизни и достижений.
Известно, что Пифагор покинул свой родной остров Самос в Эгейском море у берегов Малой Азии в знак протеста против тирании правителя, и уже в зрелом возрасте (по преданию в 40 лет) появился в греческом городе Кротоне, на юге Италии. Пифагор и его последователи – пифагорейцы – образовали тайный союз, игравший немалую роль в жизни греческих колоний в Италии. Пифагорейцы узнавали друг друга по звездчатому пятиугольнику – пентаграмме. Но Пифагору пришлось удалиться в Метапонт, где он и умер. Многочисленные легенды рисуют Пифагора прежде всего как религиозного пророка, основой религии которого была математика Бог, учил Пифагор, положил числа в основу мирового порядка. Бог – это единство, а мир – множество и состоит из противоположностей. То, что приводит противоположности к единству и соединяет все в космос, есть гармония. Гармония является божественной и заключается в числовых отношениях. Кто до конца изучит эту божественную числовую гармонию, сам станет божественным и бессмертным.
Пифагору приписывается высказывание « всё есть число». Умирая, Пифагор завещал своим ученикам изучать музыку и арифметику. В последующие столетия фигура самого Пифагора была окружена множеством легенд: его считали перевоплощенным богом Аполлоном, полагали, что у него было золотое бедро, и он был способен преподавать в одно и то же время в двух местах. Отцы раннехристианской церкви отвели Пифагору почетное место между Моисеем и Платоном. Еще в XYI в. были нередки ссылки на авторитет Пифагора в вопросах не только науки, но и магии. Дошедшие до нас биографические сведения о Пифагоре далеко не полны и не достоверны. Он много путешествовал по странам Востока, среди которых был Египет и Вавилон. Древнегреческий писатель-историк и математик Ямблих (III в. до н.э.) в своей «Биографии Пифагора» рассказывает, что последний изучал арифметику, музыку, астрономию и другие науки в Вавилоне. Пифагор был одним из тех ученых, благодаря которым математические знания из Египта и Вавилона передавались в Грецию.
Биография
Историю жизни Пифагора трудно отделить от легенд, представляющих его в качестве совершенного мудреца и великого учёного, посвящённого во все таинства греков и варваров. Ещё Геродот называл его «величайшим эллинским мудрецом»[2]. Основными источниками по жизни и учению Пифагора являются сочинения философа-неоплатоника Ямвлиха (242—306 гг.) «О Пифагоровой жизни»; Порфирия (234—305 гг.) «Жизнь Пифагора»; Диогена Лаэртского (200—250 гг.) кн. 8, «Пифагор». Эти авторы опирались на сочинения более ранних авторов, из которых следует отметить ученика АристотеляАристоксена (370—300 гг. до н. э.) родом из Тарента, где сильны были позиции пифагорейцев. Таким образом, самые ранние известные источники об учении Пифагора появились лишь 200 лет спустя после его смерти. Сам Пифагор не оставил сочинений, и все сведения о нём и его учении основываются на трудах его последователей, не всегда беспристрастных.
Родителями Пифагора были Мнесарх и Партенида с острова Самос. Мнесарх был камнерезом (D. L.); по словам же Порфирия он был богатым купцом из Тира, получившим самосское гражданство за раздачу хлеба в неурожайный год. Первая версия предпочтительнее, так как Павсаний приводит генеалогию Пифагора по мужской линии от Гиппаса из пелопоннесского Флиунта, бежавшего на Самос и ставшего прадедом Пифагора[3]. Партенида, позднее переименованная мужем в Пифаиду, происходила из знатного рода Анкея, основателя греческой колонии на Самосе.
Рождение ребёнка будто бы предсказала Пифия в Дельфах, потому Пифагор и получил своё имя, которое значит «тот, о ком объявила Пифия». В частности, Пифия сообщила Мнесарху, что Пифагор принесёт столько пользы и добра людям, сколько не приносил и не принесёт в будущем никто другой. Поэтому, на радостях, Мнесарх дал жене новое имя Пифаида, а ребёнку — Пифагор. Пифаида сопровождала мужа в его поездках, и Пифагор родился в Сидоне Финикийском (по Ямвлиху) примерно в 570 до н. э. С ранних лет он обнаружил необыкновенную одарённость (также по Ямвлиху).
По словам античных авторов, Пифагор встретился чуть ли не со всеми известными мудрецами той эпохи, греками, персами, халдеями, египтянами, впитал в себя всё накопленное человечеством знание. В популярной литературе иногда приписывают Пифагору Олимпийскую победу в боксе, путая Пифагора-философа с его тёзкой (Пифагором, сыном Кратета с Самоса), который одержал свою победу на 48-х Играх за 18 лет до рождения знаменитого философа.
В юном возрасте Пифагор отправился в Египет, чтобы набраться мудрости и тайных знаний у египетских жрецов. Диоген и Порфирий пишут, что самосский тиран Поликрат снабдил Пифагора рекомендательным письмом к фараону Амасису, благодаря чему он был допущен к обучению и посвящён не только в египетские достижения медицины и математики, но и в таинства, запретные для прочих чужеземцев.
Ямвлих пишет, что Пифагор в 18-летнем возрасте покинул родной остров и, объехав мудрецов в разных краях света, добрался до Египта, где пробыл 22 года, пока его не увёл в Вавилон в числе пленников персидский царь Камбиз, завоевавший Египет в 525 до н. э. В Вавилоне Пифагор пробыл ещё 12 лет, общаясь с магами, пока наконец не смог вернуться на Самос в 56-летнем возрасте, где соотечественники признали его мудрым человеком.
По Порфирию, Пифагор покинул Самос из-за несогласия с тиранической властью Поликрата в 40-летнем возрасте. Так как эти сведения основываются на словах Аристоксена, источника IV века до н. э., то считаются относительно достоверными. Поликрат пришёл к власти в 535 до н. э., отсюда дата рождения Пифагора оценивается в 570 до н. э., если допустить, что он уехал в Италию в 530 до н. э. Ямвлих сообщает, что Пифагор переехал в Италию в 62-ю Олимпиаду, то есть в 532—529 гг. до н. э. Эти сведения хорошо согласуются с Порфирием, но полностью противоречат легенде самого Ямвлиха (вернее, одного из его источников) о вавилонском пленении Пифагора. Точно неизвестно, посещал ли Пифагор Египет, Вавилон или Финикию, где набрался, по легендам, восточной мудрости. Диоген Лаэртский цитирует Аристоксена, который говорил, что учение своё, по крайней мере что касается наставлений по образу жизни, Пифагор воспринял от жрицы Фемистоклеи Дельфийской, то есть в местах не столь отдалённых для греков.
Разногласия с тираном Поликратом вряд ли могли послужить причиной отъезда Пифагора, скорее ему требовалось возможность проповедовать свои идеи и, более того, претворять своё учение в жизнь.
Пифагор поселился в греческой колонии Кротоне в Южной Италии, где нашёл много последователей. Пифагору традиция приписывает введение слов философия и философ.
В конце VI в. до н. э. Пифагору пришлось удалиться в другую греческую колонию Метапонт, где он и умер. По одной из версий смерть Пифагора описана так. Однажды вечером, когда сорок четыре главных члена ордена собрались у Милона, Килон спешно созвал своих сторонников. Дом Милона был окружен. Пифагорейцы, среди которых был сам учитель, заперли двери. Рассвирепевшая толпа подложила огонь и подожгла здание. Тридцать восемь пифагорейцев, ближайшие ученики учителя, весь цвет ордена и сам Пифагор погибли. По другой версии при пожаре пифагорейцы спасли жизнь своему учителю ценой своей, после чего Пифагор затосковал и вскоре покончил жизнь самоубийством.
Почти 450 лет спустя, во времена Цицерона (I в. до н. э.), в Метапонте как одну из достопримечательностей показывали склеп Пифагора.
Семья
У Пифагора была жена по имени Феано, сын Телавг и дочь Мийя (по другой версии сын Аримнест и дочь Аригнота)[4]. В книге «Великие посвященные» так говорится о жене Пифагора. Среди женщин, обучающихся у Пифагора, находилась молодая девушка большой красоты по имени Феано, дочь кротонца Бронтиноса. Между учителем и его ученицей сразу же возникло чувство высокой любви. В то время Пифагору было около 60 лет.
"Слияние этих двух жизней оказалось совершенным. Феано прониклась идеями мужа с такой полнотой, что после его смерти она стала центром пифагорейского ордена, и один из греческих авторов приводит, как авторитет, ее мнение относительно учения Чисел. Она подарила Пифагору двух сыновей - Ариместа и Телаугеса и дочь Дамо. Телаугес стал впоследствии учителем Эмпедокла и передал ему тайны пифагорейской доктрины.
Семья Пифагора представляла собой истинный образец для всего ордена, его дом называли храмом Цереры, а двор - храмом Муз.
Дочь Пифагора - Дамо была во всех отношениях достойна своих отца и матери. Пифагор доверил ей свои манускрипты с запрещением передавать их кому бы то ни было вне своей семьи. После того, как пифагорейцы рассеялись, дочери Пифагора пришлось жить в величайшей бедности. Ей предлагали большие суммы за манускрипты, но, верная воле отца, она отказалась отдать их посторонним" (Шюре Э. Пифагор. / Великие Посвященные).
Браком с Феано Пифагор утвердил один из основных Космических Законов - закон сотрудничества и взаимодействия Начал.
По Ямвлиху, Пифагор возглавлял своё тайное общество тридцать девять лет, тогда приблизительная дата смерти Пифагора может быть отнесена к 491 до н. э., к началу эпохи греко-персидских войн. Диоген, ссылаясь на Гераклида (IV в. до н. э.), говорит, что Пифагор мирно скончался в возрасте 80 лет, или же в 90 лет (по неназванным другим источникам). Из этого следует дата смерти 490 до н. э. (или 480 до н. э., что маловероятно). Евсевий Кесарийский в своей хронографии обозначил 497 до н. э. как год смерти Пифагора.
В биографии Пифагора встречаются противоречивые события, т.к. различные свидетельства о его жизни скорее основываются на легендах о Пифагоре, но и легенды содержат зёрна истины.
Пифагор занимает почётное место в истории математики. Он открыл новую эпоху в эволюции научной мысли. Пифагорейцы претворили давно известные практичные правила в научные положения.
Доказательства теоремы Пифагора.
Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах...
Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Нам кажется, что если мы хотим дать знать внеземным цивилизациям о существовании разумной жизни на Земле, то следует посылать в космос изображение Пифагоровой фигуры. Думается, что если эту информацию смогут принять мыслящие существа, то они без сложной дешифровки сигнала поймут, что на Земле существует достаточно развитая цивилизация.
Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов. Поэтому нам ничего не остается, как рассмотреть некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Сделать это полезно еще и потому, что в современных школьных учебниках дается алгебраическое доказательство теоремы. При этом бесследно исчезает первозданная геометрическая аура теоремы, теряется та нить Ариадны, которая вела древних мудрецов к истине, а путь этот почти всегда оказывался кратчайшим и всегда красивым».
Теорема Пифагора гласит: «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах». Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.
Доказательство 1
Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности.
Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:
Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.
Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны»:
Доказательство 2
Этот метод сочетает в себе алгебру и геометрию и может рассматриваться как вариант древнеиндийского доказательства математика Бхаскари.
Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b). В каждом из квадратов выполните построения, как на рисунках 2 и 3.
В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b.
Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c.
Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b).
Записав все это, имеем: a2+b2=(a+b)2 – 4*1/2*a*b. Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a2+b2= a2+b2. При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c2. Т.е. a2+b2=c2 – вы доказали теорему Пифагора.
Доказательство 3
Само же древнеиндийское доказательство описано в XII веке в трактате «Венец знания» («Сиддханта широмани») и в качестве главного аргумента автор использует призыв, обращенный к математическим талантам и наблюдательности учеников и последователей: «Смотри!».
Но мы разберем это доказательство более подробно:
Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с. Катеты треугольника назовем а и b. В соответствии с чертежом сторона внутреннего квадрата это (a-b).
Используйте формулу площади квадрата S=c2, чтобы вычислить площадь внешнего квадрата. И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b)22+4*1\2*a*b.
Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c2=(a-b)2+4*1\2*a*b. В результате решения вы получите формулу теоремы Пифагора c2=a2+b2. Теорема доказана.
Доказательство 4
Это любопытное древнекитайское доказательство получило название «Стул невесты» - из-за похожей на стул фигуры, которая получается в результате всех построений:
рис.1
рис.2
В нем используется чертеж, который мы уже видели на рис.3 во втором доказательстве. А внутренний квадрат со стороной с построен так же, как в древнеиндийском доказательстве, приведенном выше.
Если мысленно отрезать от чертежа на рис.1 два зеленых прямоугольных треугольника, перенести их к противоположным сторонам квадрата со стороной с и гипотенузами приложить к гипотенузам сиреневых треугольников, получится фигура под названием «стул невесты» (рис.2). Для наглядности можно то же самое проделать с бумажными квадратами и треугольниками. Вы убедитесь, что «стул невесты» образуют два квадрата: маленькие со стороной b и большой со стороной a.
Эти построения позволили древнекитайским математикам и нам вслед за ними прийти к выводу, что c2=a2+b2.
Доказательство 5
Это еще один способ найти решение для теоремы Пифагора, опираясь на геометрию. Называется он «Метод Гарфилда».
Постройте прямоугольный треугольник АВС. Нам надо доказать, что ВС2=АС2+АВ2.
Для этого продолжите катет АС и постройте отрезок CD, который равен катету АВ. Опустите перпендикулярный AD отрезок ED. Отрезки ED и АС равны. Соедините точки Е и В, а также Е и С и получите чертеж, как на рисунке ниже:
Чтобы доказать терему, мы вновь прибегаем к уже опробованному нами способу: найдем площадь получившейся фигуры двумя способами и приравняем выражения друг к другу.
Найти площадь многоугольника ABED можно, сложив площади трех треугольников, которые ее образуют. Причем один из них, ЕСВ, является не только прямоугольным, но и равнобедренным. Не забываем также, что АВ=CD, АС=ED и ВС=СЕ – это позволит нам упростить запись и не перегружать ее. Итак, SABED=2*1/2(AB*AC)+1/2ВС2.
При этом очевидно, что ABED – это трапеция. Поэтому вычисляем ее площадь по формуле: SABED=(DE+AB)*1/2AD. Для наших вычислений удобней и наглядней представить отрезок AD как сумму отрезков АС и CD.
Запишем оба способа вычислить площадь фигуры, поставив между ними знак равенства: AB*AC+1/2BC2=(DE+AB)*1/2(AC+CD). Используем уже известное нам и описанное выше равенство отрезков, чтобы упростить правую часть записи: AB*AC+1/2BC2=1/2(АВ+АС)2. А теперь раскроем скобки и преобразуем равенство: AB*AC+1/2BC2=1/2АС2+2*1/2(АВ*АС)+1/2АВ2. Закончив все преобразования, получим именно то, что нам и надо: ВС2=АС2+АВ2. Мы доказали теорему.
Конечно, этот список доказательств далеко не полный. Теорему Пифагора также можно доказать с помощью векторов, комплексных чисел, дифференциальный уравнений, стереометрии и т.п. И даже физики: если, например, в аналогичные представленным на чертежах квадратные и треугольные объемы залить жидкость. Переливая жидкость, можно доказать равенство площадей и саму теорему в итоге.
Заключение.
С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен (по другим источникам, более пятисот), но стремление к преумножению их числа сохранилось. Поэтому теорема Пифагора занесена в «Книгу рекордов Гиннеса». Самостоятельное «открытие» доказательства теоремы Пифагора будет полезно и современным школьникам.