В статье представлен материал о необходимости математического развития ребенка в системе дошкольного и школьного образования, под которым понимается целенаправленная методическая работа над формированием и развитием основных свойств и качеств математического мышления у каждого ребенка до максимально возможного для него уровня.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Статья "Математическое развитие ребенка" »
Зиннатова Эльвира Явдатовна, учитель первой квалификационной категории МБОУ «Средняя общеобразовательная школа №10»
Математическое развитие ребенка
Если целью математического образования ребенка в системе дошкольного и начального школьного обучения сделать не накопление математических знаний и умений, а математическое развитие ребенка, под которым понимается целенаправленная методическая работа над формированием и развитием основных свойств и качеств математического мышления у каждого ребенка до максимально возможного для него уровня, то это приведет к реальному осуществлению непрерывности математического образования, его преемственности и повышению качества математической подготовки ребенка дошкольного и младшего школьного возраста.
Предматематическая подготовка в дошкольный период очень важна не столько с предметной, сколько с психологической точки зрения. В этот период ребенок постепенно адаптируется к новому видению мира и приучается к специфике количественной оценки окружающей действительности. Для становления такого видения необходима специальная целенаправленная подготовка (обучение). Для успешного становления адекватного восприятия количественных и пространственных характеристик у ребенка в достаточной мере должна сформироваться операция анализа, позволяющая успешно производить выделение нужной характеристики рассматриваемого явления и абстрагирование от других, несущественных для данного процесса признаков. Операция анализа формируется в неразрывной связи с операцией синтеза, а качество их сформированности в значительной мере зависит от технологии их формирования. При этом выявление сходства и различия форм и количественных характеристик объектов и групп объектов требует от ребенка умения проводить операции абстрагирования от несущественных признаков, сравнения и обобщения выделенных признаков, проведения аналогии с уже известными и освоенными понятиями и действиями и т.п. Таким образом важнейшим итогом предматематематической подготовки ребенка является не только и не столько накопление определенною запаса предметных знаний и умений, сколько умственное развитие ребенка, формирование у нею необходимых специфических познавательных и умственных умений, которые являются базовыми для успешною усвоения в дальнейшем математического и любого другого обобщенного содержания.
Процесс создания альтернативных дошкольных программ математического образования во многих случаях не является приносящим пользу математическому развитию детей, поскольку ориентирован в большинстве случаев лишь на содержательную вариативность объема арифметических знаний и значительное расширение списка понятий, неперспективных с точки зрения обучения математике в начальных классах. Отсутствие реально работающих технологий математического развития ребенка дошкольного возраста делает разработку таких программ малопродуктивной, поскольку ее реализация в таком случае в основном зависит от индивидуальных возможностей педагога, а не от самой программы.
Отсутствие четкого разграничения целей дошкольной математической подготовки с целями школьными, приводит к тому, что в практической деятельности воспитатели и родители часто пытаются механически дублировать эти цели, причем, в связи с методической неподготовленностью к развивающему обучению математике, реально сводят процесс математического образования ребенка к заучиванию минимальною объема математических знаний наизусть (состав числа, счет, табличное сложение и вычитание в пределах 10, решение некоторых типовых задач). При этом подобное положение вещей на практике не изменяется уже более полувека, несмотря на появление большого количества альтернативных программ математического образования дошкольников.
Анализ проблемы преемственности в современных программах математического образования дошкольников показал, что основными путями решения этой проблемы авторы программ полагают содержательную подготовку детей к изучению арифметического материала в начальной школе. Отсутствие общего методологического подхода к проблеме математического развития ребенка дошкольного и младшего школьного возраста, ограничение методологии рамками частной методики формирования элементарныхматематических представлений и набора предметных знаний и умений в ДОУ приводит к нарушению преемственных связей в математическом развитии ребенка, к довольно низкой результативности дошкольной математической подготовки, а также к ситуации «методической неопределенности» для педагога, поскольку ни одна из альтернативных систем математического образования ребенка в ДОУ сегодня не предлагает педагогу действительно полноценную методическую систему математического развития ребенка. Понятие «математическое развитие» ребенка дошкольного и младшего школьного возраста не следует полностью ассоциировать с понятием «математические способности», имеющие природный характер. Успешность ребенка в освоении математического содержания во многих случаях связана с наличием этих природных способностей, но организация математического развития ребенка, обладающего слабыми природными способностями к математике, вполне возможна при условии применения соответствующих методик. При этом в одних случаях процесс целенаправленного математического развития ребенка будет приводить к дальнейшему развитию природных математических способностей, в других случаях - к оптимальному развитию необходимых для успешного усвоения математического содержания свойств и качеств мышления, в третьих случаях - к коррекции недостатков познавательного развития ребенка и создании предпосылок для более успешного усвоения математического содержания при дальнейшем обучении.
Цель математического развития ребенка дошкольного и младшего школьного возраста - это стимуляция и развитие математического стиля мышления (соответствующих возрасту компонентов и качеств этого стиля мышления). В дошкольном возрасте сенситивным компонентом математического мышления является конструктивное мышление, а в младшем школьном возрасте основным компонентом математического мышления является пространственное мышление.
При этом реализация целенаправленной работы по организации математического развития ребенка дошкольного и младшего школьного возраста требует научной и прикладной разработки технологии математического развития (содержание, методы, средства, формы) и не может рассматриваться как полностью зависящая от уровня подготовки педагога, его опыта и его возможностей в конструировании авторских методик в соответствии с собственными воззрениями в области математического развития ребенка, поскольку, как показывают исследования, большинство педагогов полагают, что организовывать математическое развитие следует только в отношении детей, имеющих математические способности от природы.
Целенаправленная работа по организации математического развития ребенка дошкольного и младшего школьного возраста будет способствовать общему повышению уровня развития интеллектуальных (умственных) способностей каждого ребенка, что в свою очередь благоприятно отразится на успешности обучения детей предметному содержанию. Эта работа будет также способствовать личностному развитию ребенка, поскольку такие качества математическою стиля мышления как целеустремленность, критичность, широта, гибкость, организованность, логичность и др. являются в то же время личностными характеристиками качеств ума и характера человека.
Базой для построения технологии математического развития следует полагать специфику развития мышления и восприятия ребенка младшего школьного возраста. С этой точки зрения, наполнение содержания математического образования дошкольников геометрическим материалом позволяет на начальных лапах опираться на сенсорные способности (восприятие) ребенка, поскольку адекватные модели практически всех геометрических объектов можно дать ребенку в руки для непосредственного исследования и экспериментирования уже на этапе раннего детства. Пространственные характеристики, форма и размер объектов проще поддаются вещественному и затем графическому моделированию, тогда как количественные характеристики (число) удобнее моделировать знаками и символами. С этой точки зрения, геометрическое содержание более соответствует «детскому способу» вхождения в математику, чем арифметическое..
Методические принципы отбора содержания для организации математического развития младших школьников: принцип реализации модельного подхода к обучению, т.е. необходимости представления понятий в виде вещественных и графических моделей, обеспечивающих наглядно-образный характер обучения; принцип системности, обеспечивающий взаимосвязь изучаемых математических понятий; принцип преемственности, обеспечивающий целенаправленный процесс математического образования ребенка и подготовку к изучению математики в средней школе. Использование единых принципов построения содержания математического развития дошкольников и младших школьников позволяет делает их преемственными, а также позволяет реализовать преемственность обучения математике со средней школой.
Обосновано, что, поскольку преобладающим видом мышления у большей части детей младшею школьного возраста является наглядно- образное мышление, которое является необходимой базой для формирования и развития пространственного мышления, можно считать, что младший школьный возраст является крайне важным периодом для формирования этого вида мышления. Таким образом, основная направленность процесса математического развития ребенка в начальной школе должна быть ориентирована на развитие пространственного мышления. Эта направленность требует организации целенаправленного развития трех типов пространственного оперирования, характерных для пространственного мышления человека. Вторым важным направлением математического развития младших школьников является подготовка к развитию логического понятийного мышления. Возможный вариант осуществления этого развития через систему конструктивных заданий. Тесная взаимосвязь между конструктивным и пространственным мышлением позволяет обоснованно высказать предположение о том, что в дошкольном возрасте развитие конструктивного мышления есть способ и средство стимуляции и развития пространственного мышления, которое, в свою очередь, является неотъемлемой составляющей математического стиля мышления. Под конструированием будем понимать вещественное моделирование различных объектов, понятий и отношений.
Средством организации математического развития дошкольников является система логико-конструктивных заданий па математическом содержании. Суть состоит в том, чтобы через систему специальных заданий и упражнений организовать ситуацию, позволяющую формировать и развивать у ребенка именно логические структуры в процессе знакомства с математическим содержанием. Сочетание такой работы с системой заданий, активно развивающих мелкую моторику, т. е. заданий логико-конструктивного характера, является фактором, активно влияющим на математическое развитие дошкольника.