kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Презентация к уроку геометрии по теме "Теорема Пифагора"

Нажмите, чтобы узнать подробности

Данная презентация предназначена для проведения урока по теме "Теорема Пифагора" в геометрии 8 класса. Представленный материал содержит несколько формулировок теоремы,, различные способы её доказательства, интересные факты из истории возникновения, а также занимательный материал. Данная работа интересна ученикам, так как составлена доступным для них языком, поэтому она легко воспринимается. В учебнике "Геометрия-8"  представлен лишь один способ доказательства, но после просмотра презентации некоторые ученики задаются целью отыскать другие способы доказательства и попробовать разобраться в них.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Презентация к уроку геометрии по теме "Теорема Пифагора" »

Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век.

Пребудет вечной истина, как скоро

Её познает слабый человек!

И ныне теорема Пифагора

Верна, как и в его далёкий век.

Содержание

Содержание

  • Формулировка теоремы
  • Доказательства теоремы
  • Значение теоремы Пифагора
Формулировка  теоремы Во времена Пифагора теорема звучала так:  « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»  « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».    или

Формулировка теоремы

Во времена Пифагора теорема звучала так:

  • « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»

  • « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах». 

или

Современная формулировка « В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».    

Современная формулировка

« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».    

Доказательства теоремы  На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы  (геометрических, алгебраических, механических и т.д.).

Доказательства теоремы

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы (геометрических, алгебраических, механических и т.д.).

Векторное доказательство теоремы
  • Векторное доказательство теоремы

Рассмотрим треугольник ABC

Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство: b + c = a  откуда имеем  c = a - b  возводя обе части в квадрат, получим  c²=a²+b²-2ab  Так как a перпендикулярно b, то ab=0, откуда  c²=a²+b² или c²=a²+b²   Таким образом, теорема Пифагора снова доказана.

Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство: b + c = a откуда имеем c = a - b возводя обе части в квадрат, получим c²=a²+b²-2ab Так как a перпендикулярно b, то ab=0, откуда c²=a²+b² или c²=a²+b²

Таким образом, теорема Пифагора снова доказана.

Доказательство Евклида
  • Доказательство Евклида

Дано:

ABC -прямоугольный треугольник

Доказать:

S ABDE =S ACFG +S BCHI

Доказательство:  Пусть ABDE -квадрат, построенный на гипотенузе прямоугольного треугольника ABC , а ACFG и BCHI -квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q ; соединим точки C и E , B и G .

Доказательство:

Пусть ABDE -квадрат, построенный на гипотенузе прямоугольного треугольника ABC , а ACFG и BCHI -квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q ; соединим точки C и E , B и G .

Очевидно, что углы CAE=GAB(=A+90°) ; отсюда следует, что треугольники ACE и AGB (закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA ; они имеют общее основание AE и высоту AP , опущенную на это основание, следовательно S PQEA = 2S ACE Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, S FCAG =2S GAB Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Очевидно, что углы CAE=GAB(=A+90°) ; отсюда следует, что треугольники ACE и AGB (закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA ; они имеют общее основание AE и высоту AP , опущенную на это основание, следовательно

S PQEA = 2S ACE

Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, S FCAG =2S GAB

Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Алгебраическое доказательство
  • Алгебраическое доказательство

Дано: ABC -прямоугольный треугольник

Доказать: AB 2 =AC 2 +BC 2

                                         

  Доказательство:

1) Проведем высоту CD из вершины прямого угла С . 2) По определению косинуса угла соsА=AD/AC=AC/AB , отсюда следует

AB*AD=AC 2 .

3) Аналогично соsВ=BD/BC=BC/AB , значит

AB*BD=BC 2 .

4) Сложив полученные равенства почленно, получим:

AC 2 +BC 2 = АВ *(AD + DB)

AB 2 =AC 2 +BC 2 . Что и требовалось доказать.

Геометрическое доказательство
  • Геометрическое доказательство

Дано: ABC -прямоугольный треугольник

Доказать: BC 2 =AB 2 +AC 2

Доказательство:

1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC . Затем опустим перпендикуляр ED к отрезку AD , равный отрезку AC , соединим точки B и E . 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:

S ABED =2*AB*AC/2+BC 2 /2

3) Фигура ABED является трапецией, значит, её площадь равна:

S ABED = (DE+AB)*AD/2.

4) Если приравнять левые части найденных выражений, то получим:

AB*AC+BC 2 /2=(DE+AB)(CD+AC)/2

AB*AC+BC 2 /2= (AC+AB) 2 /2

AB*AC+BC 2 /2= AC 2 /2+AB 2 /2+AB*AC

BC 2 =AB 2 +AC 2 .

    Это доказательство было опубликовано в 1882 году Гэрфилдом.

Значение теоремы Пифагора Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии .

Значение теоремы Пифагора

Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии .

Уделом истины не может быть забвенье,  Как только мир ее увидит взор;  И теорема та, что дал нам Пифагор,  Верна теперь, как в день ее рожденья.  За светлый луч с небес вознес благодаренье  Мудрец богам не так, как было до тех пор.  Ведь целых сто быков послал он под топор,  Чтоб их сожгли как жертвоприношенье.  Быки с тех пор, как только весть услышат,  Что новой истины уже следы видны,  Отчаянно мычат и ужаса полны:  Им Пифагор навек внушил тревогу.  Не в силах преградить той истине дорогу  Они, закрыв глаза, дрожат и еле дышат. А. фон Шамиссо  (Перевод А. Хованского)

Уделом истины не может быть забвенье, Как только мир ее увидит взор; И теорема та, что дал нам Пифагор, Верна теперь, как в день ее рожденья. За светлый луч с небес вознес благодаренье Мудрец богам не так, как было до тех пор. Ведь целых сто быков послал он под топор, Чтоб их сожгли как жертвоприношенье. Быки с тех пор, как только весть услышат, Что новой истины уже следы видны, Отчаянно мычат и ужаса полны: Им Пифагор навек внушил тревогу. Не в силах преградить той истине дорогу Они, закрыв глаза, дрожат и еле дышат.

А. фон Шамиссо (Перевод А. Хованского)

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons  asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи,  вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 8 класс

Скачать
Презентация к уроку геометрии по теме "Теорема Пифагора"

Автор: Бирюкова Наталья Валерьевна

Дата: 05.11.2014

Номер свидетельства: 126761

Похожие файлы

object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(76) "Конспект урока  по теме "Теорема Пифагора""
    ["seo_title"] => string(40) "konspiekturokapotiemietieoriemapifaghora"
    ["file_id"] => string(6) "307916"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1458476875"
  }
}
object(ArrayObject)#885 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(71) "Теорема Пифагора (план-конспект урока) "
    ["seo_title"] => string(40) "tieoriema-pifaghora-plan-konspiekt-uroka"
    ["file_id"] => string(6) "147124"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1419330548"
  }
}
object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(75) "Решение задач по теме «Теорема Пифагора»"
    ["seo_title"] => string(40) "reshenie_zadach_po_teme_teorema_pifagora"
    ["file_id"] => string(6) "595272"
    ["category_seo"] => string(9) "geometria"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1639846360"
  }
}
object(ArrayObject)#885 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(111) "технологическая карта урока по геометрии "теорема Пифагора" "
    ["seo_title"] => string(69) "tiekhnologhichieskaia-karta-uroka-po-ghieomietrii-tieoriema-pifaghora"
    ["file_id"] => string(6) "185882"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1426250380"
  }
}
object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(85) "Презентация к уроку по теме "Теорема Пифагора" "
    ["seo_title"] => string(53) "priezientatsiia-k-uroku-po-tiemie-tieoriema-pifaghora"
    ["file_id"] => string(6) "140971"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1418045678"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства