Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей
III. Повторение основных сведений о конусе
- Определение конуса
- Элементы конуса
- Сечения конуса
- Площадь поверхности конуса.
^ IV. Историческая справка.
Конус в переводе с греческого означает « сосновая шишка ». С конусом люди знакомы с глубокой древности. В 1906 году была обнаружена книга Архимеда ( 287 – 212 гг. до н.э. ) « О методе » , в которой дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед приписывает честь открытия этого принципа Демокриту (470 – 380 гг. до н.э.) –древне-греческому философу-материалисту. С помощью этого принципа Демокрит получил формулы для вычисления объема пирамиды и конуса.
Много сделала для геометрии школа Платона ( 428 – 348 гг. до н.э. ) Платон был учеником Сократа ( 470 – 399 гг. до н.э. ). Он в 387 г. до н.э. основал в Афинах Академию, в которой работал 20 лет. Каждый, входящий В Академию, читал надпись : « Пусть сюда не входит никто, не знающий геометрии». Школе Платона принадлежит исследование свойств призмы, цилиндра и конуса; изучение конических сечений.
Большой трактат о конических сечениях принадлежит Аполлонию Пергскому (260 – 170 гг. до н.э. ) – ученику Евклида ( III в. до н.э. ), который создал великий труд из 15 книг под названием « Начала». В ХII книге «Начал» Евклида содержатся следующие теоремы:
1) Объем конуса равен одной трети объема цилиндра с равным основанием и равной высотой; доказательство этой теоремы принадлежит Евдоксу Книдскому.
2) Отношение объемов двух конусов с равными основаниями равно отношению соответствующих высот.
3) Если два конуса равновелики, то площади их оснований обратно пропорциональны соответствующим высотам и наоборот.
Эти книги издаются и по сей день, а в школах Англии по ним учатся до сих пор. Непосредственное вычисление объема конуса дает Герон Александрийский.
^ V. Объяснение нового материала :
Предложить учащимся на основе имеющихся знаний вывести формулу для нахождения объема конуса.( учащиеся могут предложить различные способы для вычисления: через определенный интеграл, предел и рассмотреть конус как тело вращения прямоугольного треугольника вокруг катета. Если же они сами не смогут выполнить задание, то рассматривается материал по рассказу учителя с привлечением учащихся).
1 способ : Для вывода формулы объема конуса воспользуемся основной формулой для вычисления объемов тел с помощью определенного интеграла
Рассмотрим конус, у которого радиус основания r, высота h. Введем ось ОХ с началом в вершине конуса, вдоль его оси, и проведем произвольное сечение конуса плоскостью, перпендикулярной к оси ОХ.
Дальнейшие рассуждения аналогичны тем, что мы использовали при выводе объема пирамиды. (Для продолжения доказательства к доске приглашается ученик.) Получаем :
2 способ: Эту же формулу можно получить используя предел к которому стремится объем правильной пирамиды, вписанной в конус, при неограниченном увеличении числа сторон ее основания.V = V=
3 способ: Эту же самую формулу можно получить, рассматривая конус как тело вращения прямоугольного треугольника вокруг катета.
Проведите доказательство самостоятельно.
Как правило, несколько учеников быстро справляются с заданием и один из них записывает вывод формулы на доске.)
.
* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт