kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Презентация для урока геометрии "Пирамида"

Нажмите, чтобы узнать подробности

Презентация создана в помощь к уроку геометрии в 11 классе по теме "Пиримида". Презентация содержит 8 слайдов.

1 слайд -Тема презентации

2 слайд-Пирамидой называется многогранник, который состоит из плоского многоугольника, – основания пирамиды, точки, не лежащей в плоскости основания, – вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками.

3 слайд-Определение правильной пирамиды.

4 слайд- Сечения пирамиды.

5 слайд-Площадь боковой поверхности пирамиды.

6слайд-Построение правильных пирамид.

7 слайд- Усеченная пирамида.

8 слайд-Площадь боковой поверхности усеченной пирамиды.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Презентация для урока геометрии "Пирамида" »

Пирамидой называется многогранник, который состоит из плоского многоугольника, – основания пирамиды, точки, не лежащей в плоскости основания, – вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками. S вершина вершина боковые ребра боковые грани D E   основание  C А B

Пирамидой называется многогранник, который состоит из плоского многоугольника, – основания пирамиды, точки, не лежащей в плоскости основания, – вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками.

S

вершина

  • вершина

боковые ребра

боковые грани

D

E

основание

C

А

B

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания. S В правильной пирамиде все боковые грани – равные равнобедренные треугольники . Апофема  – высота боковой грани правильной пирамиды. D С Н S п= S осн+ S б.п. О А В

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

S

В правильной пирамиде все боковые грани – равные равнобедренные треугольники .

Апофема  – высота боковой грани правильной пирамиды.

D

С

Н

S п= S осн+ S б.п.

О

А

В

O S C D В А ABCD –  основание  SO – высота  Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань – треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды.   Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.  S S B A  E A B F C D D C ∆ SDB – диагональное сечение  пирамиды SABCD.

O

S

C

D

В

А

ABCD – основание

SO – высота

  • Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань – треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды.

  • Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

S

S

B

A

E

A

B

F

C

D

D

C

∆ SDB – диагональное сечение

пирамиды SABCD.

Теорема о площади боковой  поверхности правильной пирамиды Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему S S бок = ½ P осн    SH l  D С Док – во: S бок = (½al  +  ½al  +  ½al + … ) = = ½  l  (a  +  a  +  a + …)= ½Pl  Н О А В

Теорема о площади боковой поверхности правильной пирамиды

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему

S

S бок = ½ P осн SH

l

D

С

Док – во:

S бок = (½al + ½al + ½al + … ) =

= ½ l (a + a + a + …)= ½Pl

Н

О

А

В

Построение правильных пирамид S S S С А F E O D A M O M C B В C D M O В А

Построение правильных пирамид

S

S

S

С

А

F

E

O

D

A

M

O

M

C

B

В

C

D

M

O

В

А

Усеченная четырехугольная пирамида C 1 D 1 Верхнее основание   О 1 Апофема   A 1 B 1 Боковые грани (трапеции)   D С Нижнее основание О А В

Усеченная четырехугольная пирамида

C 1

D 1

Верхнее основание  

О 1

Апофема  

A 1

B 1

Боковые грани

(трапеции)  

D

С

Нижнее основание

О

А

В

Площадь боковой поверхности правильной усеченной пирамиды Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему . C D S бок =½ ( P 1осн. + P 2 осн. )  l О A B a l D 1 С 1 Док – во: S бок = (½(a+b)l  +  ½(a+b)l  +  +½(a+b)l + … ) = = ½  l  ( (a+a+…)+(b+b+…) ) = =½ ( P 1осн. + P 2 осн. )  l О 1 А 1 В 1 b

Площадь боковой поверхности правильной усеченной пирамиды

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему .

C

D

S бок ( P 1осн. + P 2 осн. ) l

О

A

B

a

l

D 1

С 1

Док – во:

S бок = (½(a+b)l + ½(a+b)l + +½(a+b)l + … ) =

= ½ l ( (a+a+…)+(b+b+…) ) =

( P 1осн. + P 2 осн. ) l

О 1

А 1

В 1

b


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 11 класс.
Урок соответствует ФГОС

Скачать
Презентация для урока геометрии "Пирамида"

Автор: Приходько Лариса Анатольевна

Дата: 05.04.2015

Номер свидетельства: 197410

Похожие файлы

object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(134) "Конспект и презентация к уроку геометрии в 10 классе "Пирамиды вокруг нас" "
    ["seo_title"] => string(82) "konspiekt-i-priezientatsiia-k-uroku-ghieomietrii-v-10-klassie-piramidy-vokrugh-nas"
    ["file_id"] => string(6) "131674"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1416207771"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(89) "Презентация к уроку геометрии  "Фигуры вращения" "
    ["seo_title"] => string(58) "priezientatsiia-k-uroku-ghieomietrii-fighury-vrashchieniia"
    ["file_id"] => string(6) "117913"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1412957795"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(171) "Использование информационно-коммуникационных технологий на уроках геометрии в 10 -11классах "
    ["seo_title"] => string(102) "ispol-zovaniie-informatsionno-kommunikatsionnykh-tiekhnologhii-na-urokakh-ghieomietrii-v-10-11klassakh"
    ["file_id"] => string(6) "215667"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1432749376"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(108) "Презентация к уроку геометрии в 10 классе по теме "Пирамида" "
    ["seo_title"] => string(68) "priezientatsiia-k-uroku-ghieomietrii-v-10-klassie-po-tiemie-piramida"
    ["file_id"] => string(6) "226330"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1440185986"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(167) "Презентация для урока по наглядной геометрии в 5 классе по теме "Правильные многогранники." "
    ["seo_title"] => string(104) "priezientatsiia-dlia-uroka-po-naghliadnoi-ghieomietrii-v-5-klassie-po-tiemie-pravil-nyie-mnoghoghranniki"
    ["file_id"] => string(6) "123178"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1414427329"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1680 руб.
2400 руб.
1750 руб.
2500 руб.
1390 руб.
1980 руб.
1850 руб.
2640 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства