kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Правильные многогранники.

Нажмите, чтобы узнать подробности

Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны. В данной работе рассмотрен один из правильных многогранников-додекаэдр . Приведена развёртка, с помощью которой можно смоделироать модель додекаэдра. Приведены свойства данного многоранника.А также формулы, по которым можно рассчитать площадь боковой и полной поверхности правильного многогранника.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Правильные многогранники. »

Правильные многогранники

Правильные многогранники

Правильные многогранники  Многогранник называется правильным , если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны

Правильные многогранники

Многогранник называется правильным , если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы равны

Названия многогранников пришли из Древней Греции, в них указывается число граней:    «эдра»  грань;    «тетра»   4;    «гекса»    6;    «окта»    8;    «икоса»  20;    «додека»  12.

Названия многогранников

пришли из Древней Греции,

в них указывается число граней:

«эдра» грань;

«тетра» 4;

«гекса» 6;

«окта» 8;

«икоса» 20;

«додека» 12.

Додекаэдр

Додекаэдр

  • Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать).
  • Сумма плоских углов при каждой вершине равна 324 градуса
Все двадцать вершин додекаэдра лежат по пять в четырёх параллельных плоскостях, образуя в каждой из них правильный пятиугольник. Двугранный угол между любыми двумя смежными гранями додекаэдра равен arccos(-1/√5)≈116°,565. Сумма плоских углов при каждой из 20 вершин равна 324°, телесный(трёхгранный) угол равен arccos(-11/5√5)≈2,9617 стерадиан. В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра. Додекаэдр имеет три звёздчатые формы. В додекаэдр можно вписать пять кубов. Если заменить пятиугольные грани додекаэдра плоскими пятиугольными звездами так, что исчезнут все ребра додекаэдра, то получим пространство пяти пересекающихся кубов. Додекаэдр как таковой исчезнет. Вместо замкнутого многогранника появится открытая геометрическая система пяти ортогональностей. Или симметричное пересечение пяти трехмерных пространств.
  • Все двадцать вершин додекаэдра лежат по пять в четырёх параллельных плоскостях, образуя в каждой из них правильный пятиугольник.
  • Двугранный угол между любыми двумя смежными гранями додекаэдра равен arccos(-1/√5)≈116°,565.
  • Сумма плоских углов при каждой из 20 вершин равна 324°, телесный(трёхгранный) угол равен arccos(-11/5√5)≈2,9617 стерадиан.
  • В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра.
  • Додекаэдр имеет три звёздчатые формы.
  • В додекаэдр можно вписать пять кубов. Если заменить пятиугольные грани додекаэдра плоскими пятиугольными звездами так, что исчезнут все ребра додекаэдра, то получим пространство пяти пересекающихся кубов. Додекаэдр как таковой исчезнет. Вместо замкнутого многогранника появится открытая геометрическая система пяти ортогональностей. Или симметричное пересечение пяти трехмерных пространств.

Свойства

Основные формулы   Если за длину ребра принять, то площадь поверхности додекаэдра:  Объём додекаэдра:  Радиус описанной сферы:  Радиус вписанной сферы:

Основные формулы

Если за длину ребра принять, то площадь поверхности додекаэдра:

Объём додекаэдра:

Радиус описанной сферы:

Радиус вписанной сферы:

Вставка рисунка

Вставка рисунка


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 10 класс.
Урок соответствует ФГОС

Скачать
Правильные многогранники.

Автор: Иванова Оксана Васильевна

Дата: 03.02.2015

Номер свидетельства: 166841

Похожие файлы

object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(113) "конспект урока математики на тему "Правильные многогранники" "
    ["seo_title"] => string(64) "konspiekt-uroka-matiematiki-na-tiemu-pravil-nyie-mnoghoghranniki"
    ["file_id"] => string(6) "164248"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1422616661"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(92) "Конспект урока на тему "Правильные многогранники" "
    ["seo_title"] => string(52) "konspiekt-uroka-na-tiemu-pravil-nyie-mnoghoghranniki"
    ["file_id"] => string(6) "148793"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1419851552"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(101) "Презентация к уроку по теме "Правильные многогранники" "
    ["seo_title"] => string(61) "priezientatsiia-k-uroku-po-tiemie-pravil-nyie-mnoghoghranniki"
    ["file_id"] => string(6) "195511"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1427910808"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(186) "Конспект урока по геометрии в 10 классе на тему: «Симметрия в пространстве. Правильные многогранники»."
    ["seo_title"] => string(95) "konspiekturokapoghieomietriiv10klassienatiemusimmietriiavprostranstviepravilnyiemnoghoghranniki"
    ["file_id"] => string(6) "256503"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1448142751"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(78) ""Многогранники. Правильные многогранники" "
    ["seo_title"] => string(43) "mnoghoghranniki-pravil-nyie-mnoghoghranniki"
    ["file_id"] => string(6) "113037"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1409071619"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства