kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Конспект урока по геометрии в 10 классе на тему: «Симметрия в пространстве. Правильные многогранники».

Нажмите, чтобы узнать подробности

Урок – лекция. (10 класс) – 1 час.
Учебная задача: совместно с учащимися «открыть»:
 понятия симметричных точек относительно точки, прямой и плоскости по аналогии с изученной ранее темой «Симметрия на плоскости»;
 понятием правильного многогранника, его виды и элементы симметрии;
 теорему о том, что «не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n≥6».
Диагностируемые цели:
В результате ученик:
Знает определения точек симметричных относительно точки (прямой, плоскости), центра (оси, плоскости) симметрии, определение правильного многогранника, виды правильных многогранников, теорему о том, что «не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n≥6».
Умеет выделять элементы симметрии правильных многогранников, решать простейшие задачи, связанные с элементами симметрии правильных многогранников.
Метод обучения: УДЕ, частично - поисковый.
Форма обучения: фронтальная, индивидуальная.
Средства обучения: канва – таблица, презентация, модели правильных многогранников.
 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Конспект урока по геометрии в 10 классе на тему: «Симметрия в пространстве. Правильные многогранники».»

Учитель математики

МБОУ СОШ №70 г. Липецка

Хохлова Наталья Александровна

Конспект урока на тему: «Симметрия в пространстве. Правильные многогранники».

Урок – лекция. (10 класс) – 1 час.

Учебная задача: совместно с учащимися «открыть»:

  • понятия симметричных точек относительно точки, прямой и плоскости по аналогии с изученной ранее темой «Симметрия на плоскости»;

  • понятием правильного многогранника, его виды и элементы симметрии;

  • теорему о том, что «не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n6».

Диагностируемые цели:

В результате ученик:

Знает определения точек симметричных относительно точки (прямой, плоскости), центра (оси, плоскости) симметрии, определение правильного многогранника, виды правильных многогранников, теорему о том, что «не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n6».

Умеет выделять элементы симметрии правильных многогранников, решать простейшие задачи, связанные с элементами симметрии правильных многогранников.

Метод обучения: УДЕ, частично - поисковый.

Форма обучения: фронтальная, индивидуальная.

Средства обучения: канва – таблица, презентация, модели правильных многогранников.



Действия учителя

Действия учеников

Записи на доске

  1. Мотивационно – ориентировочный этап

- Здравствуйте, ребята!

Посмотрите на рисунок и скажите, что за объемные фигуры изображены на рисунке?

-Дайте определение многогранника.




-Какие из изображенных многогранников вам известны?


-На какие две группы можно разделить эти многогранники?

Какие многогранники называют выпуклыми? Определим, какие многогранники будут выпуклыми, а какие невыпуклыми. Почему 3,6,7 невыпуклые?

- Что мы знаем о сумме всех плоских углов при каждой вершине выпуклого многогранника?


- Какая фигура лежит в основании данного многогранника?

-Чему равна сумма углов в многоугольнике?

- Давайте подсчитаем, чему равна сумма всех углов в правильном шестиугольнике? Каждого угла шестиугольника?

Это нам сегодня понадобиться для изучения новой темы.

- Однажды Л.Н. Толстой сказал: «Стоя перед чёрной доской и рисуя на ней мелом разные фигуры, я вдруг был поражён мыслью: почему симметрия приятна глазу? Что такое симметрия? Это врождённое чувство. На чём же оно основано?».


-С симметрией мы встречаемся в природе, архитектуре, технике, быту.

Мы часто видим симметричные творения природы (листья, цветы, птицы, животные) или творения человека (здания, техника) - все то, что окружает нас каждый день. В быту: молотки, рубанки, лопаты, трубы. Мы смотрим на себя в зеркало и видим, что части нашего лица симметричны друг другу. По улицам ездят автомобили, автобусы, правая и левая части которых симметричны. Таким образом, симметрия бывает не только на плоскости (кленовый лист), но и в пространстве (лицо).


Ребята, для начала вспомним такие понятия, как симметрия относительно точки, симметрия относительно прямой, которые мы изучили на плоскости.

-Какие же точки называются симметричными относительно точки?


При этом точку О называют центром симметрии.

- Сформулируйте определение точек симметричных относительно прямой.




При этом прямую а называют осью симметрии.

По аналогии с симметрией на плоскости определятся симметрия в пространстве. Симметрия тесно связана с многогранниками.

Цель нашего урока: расширить знания о симметрии и многогранниках.

Тему урока мы запишем в процессе заполнения таблиц.


На рисунке изображены многогранники.


Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, называют многогранником.


Правильная призма (1), наклонная призма(4), пирамида треугольная (2), пятиугольная (5).

На выпуклые и невыпуклые многогранники.

Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани.

Выпуклые:1,2,4,5, невыпуклые:3,6,7.


Сумма всех плоских углов при каждой вершине выпуклого многогранника меньше .


В основании данного многогранника лежит правильный шестиугольник.

Сумма углов в многоугольнике равна .

Сумма всех углов в правильном шестиугольнике равна . Каждый угол равен .

































Точки и называются симметричными относительно точки О, если О - середина отрезка .



Точки называются симметричными относительно прямой а, если прямая а проходит через середину отрезка и перпендикулярна к этому отрезку.








(слайд 1)

(слайд 2)







(слайд 3)










(слайд 4)






(слайд 5)







(слайд 6)







(слайд 7 -11)
















(слайд 12)





(слайд 13)

  1. Содержательный этап

- Как было сказано выше, по аналогии с симметрией на плоскости определятся симметрия в пространстве. Поэтому в процессе работы заполним следующую канву – таблицу.

Мы вспомнили определение точек симметричных относительно точки. Попробуйте сформулировать такое определение только для симметричных точек в пространстве.

Чем будет точка О?

- А как формулируется определение точек симметричных относительно прямой в пространстве?



Чем будет являться прямая а?

- В пространстве существует понятие точек симметричных относительно плоскости. Попытайтесь дать определение.


Значит, плоскость- плоскость симметрии.

Итак, точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Таким образом, в пространстве помимо центральной и осевой симметрии, которые есть на плоскости, добавляется зеркальная симметрия.


-Оказывается у некоторых многогранников тоже есть центр, ось и плоскость симметрии, которые называют элементами симметрии этого многогранника.

-Рассмотрим два многогранника: куб и параллелепипед. Куб называют правильным многогранником. Давайте выясним почему?

Давайте подсчитаем, сколько ребер сходиться в каждой вершине куба, параллелепипеда.

Чем являются грани этих многогранников?

Особо важно, что все грани куба равны между собой, а у параллелепипеда не все грани равны между собой.

Таким образом, куб будем относить к правильным многогранникам.


- Посмотри на следующий рисунок. Давайте попробуем определить является ли одна из этих пирамид правильным многогранником. Действуем по той же схеме (определяем число ребер сходящихся в каждой вершине, вид граней и их равенство).

Попробуйте дать определение правильного многогранника.

Определение. Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходиться одно и тоже число ребер.

- Возникает вопрос, сколько граней, являющихся правильными многоугольниками, может сходиться в одной вершине, чтобы в результате получился правильный многогранник.

Давайте подсчитаем, а полученные результаты будет сравнивать с , так как по теореме, которую мы вспоминали в начале урока сумма всех плоских углов при каждой вершине выпуклого многогранника меньше .

1. Рассмотрим правильный треугольник. Сколько градусов равен каждый угол? Подсчитаем сумму плоских углов при вершине треугольника, если:

а) в каждой вершине сходится три грани;

Сумма меньше , значит, такой правильный многогранник может быть.

б) в каждой вершине сходится четыре грани;

Сумма меньше , значит, такой правильный многогранник может быть.

в) в каждой вершине сходится пять граней;

Сумма меньше , значит, такой правильный многогранник может быть.

г) в каждой вершине сходится шесть граней;

Сумма равна , противоречит теореме. Следовательно, такого многогранника не может быть.

2. Рассмотрим правильный четырехугольник – квадрат. Сколько градусов равен каждый угол? Подсчитаем сумму плоских углов при вершине квадрата, если:

а) в каждой вершине сходится три грани;

Сумма меньше , значит, такой правильный многогранник может быть.

б) в каждой вершине сходится четыре грани;

Сумма равна , противоречит теореме. Следовательно, такого многогранника не может быть.

3. Рассмотрим правильный пятиугольник. Сколько градусов равен каждый угол? Подсчитаем сумму плоских углов при вершине квадрата, если:

а) в каждой вершине сходится три грани;

Сумма меньше , значит, такой правильный многогранник может быть.

б) в каждой вершине сходится четыре грани, очевидно, что сумма равна , противоречит теореме. Следовательно, такого многогранника не может быть.

Если будем рассматривать правильный шестиугольник, то сумма плоских углов при каждой вершине, в которой сходится три грани, будет равна . Это тоже противоречит теореме.

Исходя из наших расчетов, можно сделать предположение, что не существует многогранника, гранями которого являются правильные шестиугольники. Верно ли это предположение?


-Ответ на этот вопрос дает следующая теорема. Сформулируем и докажем ее.

Теорема. Не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n6.

Доказательство:

  1. Угол правильного n-угольника при n6 не меньше . Почему? (обратить внимание учеников на подсчеты в начале урока).


  1. При каждой вершине многогранника должно быть не менее трех плоских углов.

Поэтому если бы существовал правильный многогранник, у которого грани – правильные n-угольники при n6, то сумма плоских углов при каждой вершине такого многогранника была бы не меньше чем . Это невозможно. Почему? (так как сумма всех плоских углов при каждой вершине выпуклого многогранника меньше .


Из этого условия сделаем следующий важный вывод: каждая вершина правильного многогранника может быть вершиной либо трех, четырех или пяти равносторонних треугольников, либо трех квадратов, либо трех правильных пятиугольников. Других возможностей нет.

В соответствии с этим выводом получаем следующие виды правильных многогранников:

  1. правильный тетраэдр;

  2. правильный октаэдр;

  3. правильный икосаэдр;

  4. куб;

  5. правильный додекаэдр;

Немного из истории.

Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона «Тимаус» (427 -347 до н.э.). Поэтому правильные многогранники также называют «платоновыми телами». Каждый из правильных многогранников, а их всего пять, Платон ассоциировал с четырьмя «земными» элементами: земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с «неземным» элементом – небом (додекаэдр).

Рассмотрим виды правильных многогранников и их элементы симметрии, заполняя следующую канву-таблицу (см. приложение). Эту таблицу мы заполним не полностью, продолжим заполнение на уроке – семинаре.







Точки и называются симметричными относительно точки О, если О - середина отрезка .



Точка О – центр симметрии.

Точки называются симметричными относительно прямой а, если прямая а проходит через середину отрезка и перпендикулярна к этому отрезку.

Прямая а – ось симметрии.

Точки называются симметричными относительно плоскости , если плоскости проходит через середину отрезка и перпендикулярна к этому отрезку.























По три ребра в каждой вершине.



Грани куба – квадраты (правильные многоугольники), грани параллелепипеда – прямоугольники (неправильные многоугольники).























Обсуждение предложенных вариантов.













Каждый угол в правильном треугольнике равен .



Если в каждой вершине сходится три грани, то сумма плоских углов при вершине равна .



Если в каждой вершине сходится четыре грани, то сумма плоских углов при вершине равна .



Если в каждой вершине сходится пять граней, то сумма плоских углов при вершине равна .



Если в каждой вершине сходится шесть граней, то сумма плоских углов при вершине равна .




Каждый угол в квадрате равен .




Если в каждой вершине сходится три грани, то сумма плоских углов при вершине равна .



Если в каждой вершине сходится четыре грани, то сумма плоских углов при вершине равна .




Каждый угол в правильном пятиугольнике равен .



Если в каждой вершине сходится три грани, то сумма плоских углов при вершине равна .




























Так как угол в правильном шестиугольнике равен , следовательно, меньше угол правильного n-угольника при n6 быть не может.












Сумма всех плоских углов при каждой вершине выпуклого многогранника меньше

Симметрия

На плоскости

В пространстве





(слайд 14)






Заполненная канва – таблица:

Симметрия

На плоскости

В пространстве

Две точки называются симметричными относительно данной точки (центра симметрии), если данная точка является серединой соединяющего их отрезка.

Точки А и А1 называются симметричными относительно прямой а (оси симметрии), если прямая а проходит через середину отрезка АА1 и перпендикулярна к нему.


Точки А и А1 называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку.















(слайд 15)















(слайд 16)











(слайд 17)
























































































(слайд 18)





































(слайд 19)






(слайд 20)


















  1. Рефлексивно – оценочный этап

- Какова была цель урока?

- О каком новом виде симметрии вы узнали?

- Сколько видов правильных многогранников существует? Почему?





Домашнее задание: §3 (п.35-37) выучить определения и формулировки теорем, заполнить до конца канву – таблицу.

(слайд 21)

Канва – таблица по теме: «Симметрия».



Канва таблица по теме: «Элементы симметрии правильных многогранников» (заполненная на уроке).

Правильный многогранник

Определение

Центр симметрии

Ось симметрии

Плоскость симметрии

Тетраэдр


Тетраэдр – правильный многогранник, составленный из 4 равносторонних треугольников. Каждая из вершин является вершиной трех треугольников. Сумма плоских углов при каждой вершине равна 180°.

Правильный тетраэдр не имеет центра симметрии.

Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер.


Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.

Октаэдр





Икосаэдр





Куб





Додекаэдр





Канва – таблица для учеников.

Правильный многогранник

Определение

Центр симметрии

Ось симметрии

Плоскость симметрии
























Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 10 класс

Автор: Хохлова Наталья Александровна

Дата: 22.11.2015

Номер свидетельства: 256503


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1720 руб.
2640 руб.
1630 руб.
2500 руб.
1730 руб.
2660 руб.
1530 руб.
2350 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства