kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Открой свою звезду.

Нажмите, чтобы узнать подробности

 Начинаем урок, девизом  которого будет древняя китайская мудрость: "Скажи мне - и я забуду, покажи мне - и я запомню. Вовлеки меня - я пойму".

План урока:

  1. обобщить и систематизировать знания учащихся, проверить глубину и прочность знаний, умений;
  2. развивать у учащихся умение анализировать, выделять главное, способность к самоконтролю;
  3. воспитывать внимательность, трудолюбие, аккуратность, интерес к предмету.

Повторение правил сравнения чисел с разными знаками, отрицательных чисел. Умножение и деление чисел с разными знаками и противоположными знаками.

Задания:

  1. метеоритный дождь;
  2. считаем быстро иправильно;
  3. заполните таблицу;
  4. сравните значения выражений;
  5. проверьте своего товарища.

В итоге решить задачу на определения уровня воды во время паводка.

 

 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Открой свою звезду. »

Урок геометрии по теме "Перпендикулярность прямой и плоскости". 10-й класс

Будзинская Мария Феликсовна, 

учитель математики высшей категории

Цели:

  1. закрепить вопросы теории по теме «Перпендикулярность прямой и плоскости»;

  2. вырабатывать навыки применения теоретических знаний к решению типовых задач на перпендикулярность прямой и плоскости.

План:

  1. Теоретический опрос.

    1. Доказательство изученных теорем у доски.

    2. Фронтальный опрос.

    3. Презентации учащихся по данной теме.

  2. Решение задач.

    1. Решение устных задач по готовым чертежам.

    2. Решение письменных задач (по группам).

    3. Самостоятельная работа с индивидуальным заданием.

  3. Итог урока. Задание на дом.

Ход урока

I. Теоретический опрос (4 ученика у доски)

1) доказать лемму о 2-ух параллельных прямых, одна из которых перпендикулярна к третьей;
2) доказать теорему о 2-ух параллельных прямых, одна из которых перпендикулярна к плоскости;
3) доказать обратную теорему о параллельности 2-ух прямых, перпендикулярных к плоскости;
4) доказать признак перпендикулярности прямой и плоскости.

Пока ученики готовятся у доски к ответу, с классом проводится фронтальный опрос.
(Интерактивная доска - на экране появляются вопросы (Приложение 1), и ученики отвечают на них)

1. Закончить предложение:

а) две прямые в пространстве называются перпендикулярными, если… (угол между ними равен 90°)
б) прямая называется перпендикулярной к плоскости, если… (она перпендикулярна к любой прямой, лежащей в этой плоскости)
в) если две прямые перпендикулярны к плоскости, то они… (параллельны)
г) если плоскость перпендикулярна к одной из двух параллельных прямых, то она… (перпендикулярна и к другой прямой)
д) если две плоскости перпендикулярны к одной прямой, то они… (параллельны)

2. Дан параллелепипед

а) Назовите:
1) рёбра, перпендикулярные к плоскости (DCC1(ответ: AD; A1D1; B1C1; BC) 
2) плоскости, перпендикулярные ребру BB1 (ответ: (АВС); (A1B1C1))

б) Определите взаимное расположение:
1) прямой CC1 и плоскости (DСВ(ответ: они перпендикулярны)
2) прямой D1C1 и плоскости (DCB(ответ: они параллельны)

Далее выслушиваются ответы учеников у доски с дополнениями и исправлениями по необходимости. Затем рассматриваются презентации по данной теме, подготовленные рядом учеников в качестве зачётных работ (Приложение 2, Приложение 3, Приложение 4).
(Накануне изучения каждой темы учащимся предлагается такой вариант зачёта)

II. Решение задач.

1. Решение задач по готовым чертежам (Устно)

1

Дано: ∆ ABC - прямоугольный; AM ⊥ AC; M ∉ (ABC)
ДоказатьAC ⊥ (AMB)
Доказательство: Т.к. AC ⊥ AB и AC ⊥ AM, а AM ⋂ AB, т.е. АМ и АВ лежат в плоскости (АМВ), то AC ⊥ (AMB) по признаку перпендикулярности прямой и плоскости.
Ч.т.д.

2

ДаноВМDC - прямоугольник, M ∉ (ABC), MB ⊥ AB
ДоказатьCD ⊥ (ABC)
ДоказательствоMB ⊥ BC, т.к. ВМDC – прямоугольник, MB ⊥ AB по условию, BC ⋂ AB, т.е. ВС и АВ лежат в плоскости (АВС) ⇒ MB ⊥ (ABC) по признаку перпендикулярности прямой и плоскости. СD ∥ МВ по свойству сторон прямоугольника ⇒ CD ⊥ (ABC) по теореме о двух параллельных прямых, одна из которых перпендикулярна к плоскости (то и другая прямая перпендикулярна к этой плоскости).
Ч.т.д.

3

ДаноАВСD – прямоугольник, M ∉ (ABC), MB ⊥ BC
ДоказатьAD ⊥ AM
Доказательство:
1) ∠ABC = 90°, т.к. АВСD – прямоугольник ⇒ BC ⊥ ABBS ⊥ MB по условию, MB ⋂ AB = B, т.е. МВ и АВлежат в плоскости (АМВ) ⇒ BC ⊥ (AMB) по признаку перпендикулярности прямой и плоскости.
2) BC ∥ AD (по свойству сторон прямоугольника) ⇒ AD ⊥ (AMB) по теореме о двух параллельных прямых, одна из которых перпендикулярна плоскости (то и другая прямая перпендикулярна к этой плоскости).
3) Т.к. AD ⊥ (AMB) ⇒ AD ⊥ AM по определению прямой, перпендикулярной плоскости.
Ч.т.д.

4

ДаноАВСD – параллелограмм, M ∉ (ABC), МВ = МDМА = МС
ДоказатьMO ⊥ (ABC)
Доказательство:
1) Т.к. О – точка пересечения диагоналей параллелограмма, то АО = СО и ВО = DO. ∆ BMD - равнобедренный, т. к. ВМ = МD по условию, значит МО - медиана и высота, т.е. MO ⊥ BD.
2) Аналогично доказывается в ∆ AMCMO ⊥ AC.
3) Итак, MO ⊥ BD и MO ⊥ AC. а ВD и АС – пересекающиеся прямые, лежащие в плоскости (АВС) ⇒ MO ⊥ (ABC) по признаку перпендикулярности прямой и плоскости.
Ч.т.д.

(Устные ответы к каждой задаче требуется обосновывать, проговаривая всякий раз формулировки применяемых теорем)

2. Решение письменных задач

Класс делится на три группы (например, по рядам), и каждой группе даётся задача с последующей проверкой решения у доски.

1.2 (№125 учебника)

Через точки P и Q прямой РQ проведены прямые, перпендикулярные к плоскости α и пересекающие её соответственно в точках P1 и Q1. Найдите P1Q1, если PQ = 15 cм; PP1 = 21,5 cм; QQ1 = 33,5 cм.
Решение:

1) PP1 ⊥ α и QQ1 ⊥ α по условию ⇒ PP1 ∥ QQ1 (обосновать);
2) PP1 и QQ1 определяют некоторую плоскость β, α ⋂ β = P1Q1;
3) PP1Q1Q - трапеция с основаниями PP1 и QQ1, проведём PK ∥ P1Q1;
4) QK = 33,5 - 21,5 = 12 (см)

P1Q1 = PK =

= 9 см.

Ответ: P1Q1 = 9 см.

2.2

В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = 9 см; ВС = 8 см; ВD = 17 см. Найдите площадьBDD1B1.
Решение:

1) ∆ ABD: ∠BAD = 90°; АD = BC = 8 см;

ВD =

см;

2) ∆ DD1B: ∠D1DB = 90°;

DD1 =

= 12 см;


3) SBB1D1D = BD ∙ DD1 =

см2.


Ответ:

см2.

3.2

Отрезок МН пересекает плоскость α в точке К. Из концов отрезка проведены прямые МЕ и НР, перпендикулярные к плоскости α. НР = 4 см; МЕ = 12 см; НК = 5 см. Найдите отрезок РЕ.
Решение:

1) Т.к. прямые МЕ и НР перпендикулярны к плоскости α, то МЕ ∥ НР (обосновать) и через них проходит некоторая плоскость β. α ⋂ β = EP;
2)МЕ ⊥ EP; НР ⊥ EP(обосновать), т.е. ∠MEK = ∠HPK = 90°;

3) ∆ HPKKP =

= 3 см;

4) ∠EMK = ∠PHK (накрест лежащие для параллельных прямых МЕ и НР и секущей МН),

тогда ∆ MEK ∆ HPK по двум углам и

; т.е.

⇒ EK =

= 9 см,

РЕ = РК + КЕРЕ = 3 + 9 = 12 см.

Ответ: РЕ = 12 см.

3. Самостоятельная работа (направлена на проверку усвоения материала по данной теме)

Вариант I

Вариант II

Через вершины А и В прямоугольника АВСDпроведены параллельные прямые AA1 и BB1, не лежащие в плоскости прямоугольника. Известно, чтоAA1 ⊥ ABAA1 ⊥ AD. Найдите B1B, если B1D = 25 см, AB = 12 см, AD = 16 см.

Через вершины А и В ромба АВСD проведены параллельные прямые AA1 и BB1, не лежащие в плоскости ромба. Известно, что BB1 ⊥ BCBB1 ⊥AB. Найдите A1A, если A1C = 13 см, BD = 16 см, AB= 10 см.

Решение:

1) AA1 ⊥ ABAA1 ⊥ AD, а AB ⋂ AD = A ⇒ AA1 ⋂ (ABC) (по признаку перпендикулярности прямой и плоскости), а т.к. AA1 ∥ BB1, то BB1 ⊥ (ABC) ⇒ BB1 ⊥BD;
2) ∆ ABD: ∠BAD = 90°. По теореме Пифагора:

BD =

= 20 см;

3) ∆ B1BD – прямоугольный. По теореме Пифагора:

B1B =

= 15 см.

Ответ: 15 см.

Решение:

1) BB1 ⊥ ABBB1 ⊥ BC, а AB ⋂ BC = B ⇒ BB1 ⋂ (ABC) (по признаку перпендикулярности прямой и плоскости), а т.к. BB1 ∥ AA1, то AA1 ⊥ (ABC) ⇒ AA1⊥ AC;
2) Используя свойство диагоналей ромба, имеем в ∆AOB: ∠AOB = 90°, BO = ½ BD = 8 см. По теореме Пифагора:

AO =

= 6 см,

AO = ½ AC ⇒ AC = 12 см;
3) ∆ A1AC – прямоугольный. По теореме Пифагора:

AA1 =

= 5 см.

Ответ: 5 см.

Индивидуальное задание для более сильных учеников. (Вариант III)

Дано: ∆ ABCAB = AC = BCCD ⊥ (ABC); AM = MBDM = 15 дм; CD = 12 дм.
Найти: S ADB
Решение:

1) Т.к. CD ⊥ (FDC) ⇒ CD ⊥ AC и CD ⊥ BC, т.е. ∆ ADC, ∆ BDC – прямоугольные;
2) ∆ ADC = ∆ BDC (по двум катетам) ⇒ AD = BD, т.е. ∆ ADB – равнобедренный и DM – медиана, а значит и высота; 3) DC ⊥ MC ⇒ MCD – прямоугольный,

тогда MC =

= 9;

4) ∆ ABC – равносторонний, поэтому СМ – медиана и высота, т.е. ∆ MCB – прямоугольный, ∠B = 60°,

sin ∠B =

, тогда

,

а АВ = ВС (по условию).
5) S ADB = ½ DM ∙ AB;

S ADB = ½ ∙ 15 ∙

.


Ответ:

III. Подводятся итоги урока. Задание на дом: повторить теоретический материал по изученной теме, глава II, №130, №131.




2



Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 6 класс.
Урок соответствует ФГОС

Скачать
Открой свою звезду.

Автор: Будзинская Мария Феликсовна

Дата: 15.01.2015

Номер свидетельства: 155654

Похожие файлы

object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(147) "«ПУТЕШЕСТВИЕ К ЗВЕЗДАМ» коррекционно-развивающее занятие для детей 1класса КРО "
    ["seo_title"] => string(94) "putieshiestviie-k-zviezdam-korriektsionno-razvivaiushchieie-zaniatiie-dlia-dietiei-1klassa-kro"
    ["file_id"] => string(6) "120046"
    ["category_seo"] => string(9) "psihologu"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1413579875"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(27) "Полет в космос "
    ["seo_title"] => string(15) "poliet-v-kosmos"
    ["file_id"] => string(6) "102126"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1402480448"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(96) "Конспект урока «Небесные тела: планеты и звезды».5 кл"
    ["seo_title"] => string(57) "konspiekt-uroka-niebiesnyie-tiela-planiety-i-zviezdy-5-kl"
    ["file_id"] => string(6) "255150"
    ["category_seo"] => string(9) "biologiya"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1447867705"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(83) "Внеурочное занятие: Космическое путешествие "
    ["seo_title"] => string(54) "vnieurochnoie-zaniatiie-kosmichieskoie-putieshiestviie"
    ["file_id"] => string(6) "205536"
    ["category_seo"] => string(7) "prochee"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1429910842"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(114) "Классный час,посвященный Дню языков народа РК «Язык мой друг»."
    ["seo_title"] => string(69) "klassnyi-chas-posviashchiennyi-dniu-iazykov-naroda-rk-iazyk-moi-drugh"
    ["file_id"] => string(6) "310859"
    ["category_seo"] => string(10) "vneurochka"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1459103557"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1580 руб.
2640 руб.
1440 руб.
2400 руб.
1600 руб.
2660 руб.
1360 руб.
2260 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства