kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Complex Numbers

Нажмите, чтобы узнать подробности

Addition

Just add real parts to real parts and imaginary parts to imaginary parts:

(a + bi) + (c + di) =  (a + c) + (b + d)i

Examples:

  (16 + i) + (7 – 11i) = (16 + 7) + (1 – 11)i =  23 – 10i

  (–2 – 5i) + (–3 + 7i) = (–2 + (–3)) + (–5 + 7)i =  –5 + 2i

Subtraction

Just subtract real parts from real parts and imaginary parts from imaginary parts:

  (a + bi) – (c + di) =  (a – c) + (b – d)i

Examples:

  (16 + i) – (7 – 11i) = (16 – 7) + (1 – (– 11))i

                = (16 – 7) + (1 + 11)i = 9 + 12i

  (–2 – 5i) – (–3 + 7i) = (–2 – (–3)) + (–5 – 7)i

                  = (–2 + 3) + (–5 – 7)i =  1 – 12i

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Complex Numbers»

Complex Numbers

Complex Numbers

Complex Numbers Definition: A complex number is any number, z, which has a real part and an imaginary part:   z = a + bi,  where a and b are real numbers and i =  – 1. Examples of complex numbers:   1 + i, – 1 + 16i, 153 – i, 0.000002 + 5301.7i, – i The last example given is a complex number with real part zero ; this is called a “pure imaginary” number.  The entire set of real numbers is embedded within the complex numbers: z = a + 0i  The entire set of imaginary numbers is embedded within the complex numbers: z = 0 + bi  Any point (x,y) on the Cartesian plane corresponds to a complex number z = x + yi  (the Cartesian plane then is referred to as the “complex plane”)  A complex number z = a + bi has another complex number associated with it, called its conjugate , z* = a – bi  (z and z* are conjugates of each other: z is the conjugate of z*)  10/19/16

Complex Numbers

Definition: A complex number is any number, z, which has a real part and an imaginary part:

z = a + bi, where a and b are real numbers and i =  – 1.

Examples of complex numbers:

1 + i, – 1 + 16i, 153 – i, 0.000002 + 5301.7i, – i

The last example given is a complex number with real part zero ; this is called a “pure imaginary” number.

  • The entire set of real numbers is embedded within the complex numbers: z = a + 0i
  • The entire set of imaginary numbers is embedded within the complex numbers: z = 0 + bi
  • Any point (x,y) on the Cartesian plane corresponds to a complex number z = x + yi

(the Cartesian plane then is referred to as the “complex plane”)

  • A complex number z = a + bi has another complex number associated with it, called its conjugate , z* = a – bi

(z and z* are conjugates of each other: z is the conjugate of z*)

10/19/16

Operations with Complex Numbers Addition Just add real parts to real parts and imaginary parts to imaginary parts:   (a + bi) + (c + di) = (a + c) + (b + d)i Examples:  (16 + i) + (7 – 11i) = (16 + 7) + (1 – 11)i = 23 – 10i  (–2 – 5i) + (–3 + 7i) = (–2 + (–3)) + (–5 + 7)i = –5 + 2i Subtraction Just subtract real parts from real parts and imaginary parts from imaginary parts:   (a + bi) – (c + di) = (a – c) + (b – d)i Examples:  (16 + i) – (7 – 11i) = (16 – 7) + (1 – (– 11))i    = (16 – 7) + (1 + 11)i = 9 + 12i  (–2 – 5i) – (–3 + 7i) = (–2 – (–3)) + (–5 – 7)i    = (–2 + 3) + (–5 – 7)i = 1 – 12i 10/19/16

Operations with Complex Numbers

Addition

Just add real parts to real parts and imaginary parts to imaginary parts:

(a + bi) + (c + di) = (a + c) + (b + d)i

Examples:

(16 + i) + (7 – 11i) = (16 + 7) + (1 – 11)i = 23 – 10i

(–2 – 5i) + (–3 + 7i) = (–2 + (–3)) + (–5 + 7)i = –5 + 2i

Subtraction

Just subtract real parts from real parts and imaginary parts from imaginary parts:

(a + bi) – (c + di) = (a – c) + (b – d)i

Examples:

(16 + i) – (7 – 11i) = (16 – 7) + (1 – (– 11))i

= (16 – 7) + (1 + 11)i = 9 + 12i

(–2 – 5i) – (–3 + 7i) = (–2 – (–3)) + (–5 – 7)i

= (–2 + 3) + (–5 – 7)i = 1 – 12i

10/19/16

Operations with Complex Numbers 2 Multiplication For multiplication, we must use the distributive property:  (a + bi)(c + di) = (a + bi)(c) + (a + bi)(di)    = ac + bci + adi + bd(i 2 ) = (ac – bd) + (ad + bc)i Notice that we used the definition of i: it is the number which squared gives –1. Examples:  (–2 – 5i)(–3 + 7i) = ((–2)(–3) – (–5)(7)) + ((–2)(7) + (–5)(–3))i    = (6 – (–35)) + (–14 + 15)i = 41 + i  (7 + ½ i)(–2 + i) = ((7)(–2) – (½)(1)) + ((7)(1) + (½)(–2))i    = (–14 – ½) + (7 – 1)i = – 29 + 6i 2 Properties of i i 0 = 1,  i 1 = i, i 2 = –1, i 3 = –i, i 4 = 1, i 5 = i, i 6 = –1, etc.  i –1 = –i, i –2 = –1, i –3 = i, i –4 = 1, i –5 = –i, i –6 = –1, etc.  10/19/16

Operations with Complex Numbers 2

Multiplication

For multiplication, we must use the distributive property:

(a + bi)(c + di) = (a + bi)(c) + (a + bi)(di)

= ac + bci + adi + bd(i 2 ) = (ac – bd) + (ad + bc)i

Notice that we used the definition of i: it is the number which squared gives –1.

Examples:

(–2 – 5i)(–3 + 7i) = ((–2)(–3) – (–5)(7)) + ((–2)(7) + (–5)(–3))i

= (6 – (–35)) + (–14 + 15)i = 41 + i

(7 + ½ i)(–2 + i) = ((7)(–2) – (½)(1)) + ((7)(1) + (½)(–2))i

= (–14 – ½) + (7 – 1)i = – 29 + 6i

2

Properties of i

i 0 = 1, i 1 = i, i 2 = –1, i 3 = –i, i 4 = 1, i 5 = i, i 6 = –1, etc.

i –1 = –i, i –2 = –1, i –3 = i, i –4 = 1, i –5 = –i, i –6 = –1, etc.

10/19/16

Operations with Complex Numbers 3 Division For division, we must use the properties of complex conjugates (next slide):  a + bi  (a + bi)(c – di)  (ac + bd) + (– ad + bc)i First we multiply the fraction (a + bi) / (c + di) by one. But we choose the form of one to be the complex conjugate of the denominator: (c – di) / (c – di) . Then just multiply the numerator factors and the denominator factors. This makes the denominator pure real, taking advantage of the fact that (c + di)(c - di) = c 2 + d 2 . Examples:  16 + i  (16 + i)(–3 – 7i)  (–48 + 7) + (–112 – 3)i  –41 – 115i  3 – 13i  (3 – 13i)(– 5i)  – 65 – 15i   – 5(13 + 3i)  –13 – 3i  = = c + di  (c + di)(c – di)  c 2 + d 2  = = = – 3  + 7i  (–3 + 7i)(–3 – 7i)  9 + 49   58 = = = = 5i  (5i)(– 5i)  25  25  5  10/19/16

Operations with Complex Numbers 3

Division

For division, we must use the properties of complex conjugates (next slide):

a + bi (a + bi)(c – di) (ac + bd) + (– ad + bc)i

First we multiply the fraction (a + bi) / (c + di) by one. But we choose the form of one to

be the complex conjugate of the denominator: (c – di) / (c – di) . Then just multiply the

numerator factors and the denominator factors. This makes the denominator pure real,

taking advantage of the fact that (c + di)(c - di) = c 2 + d 2 . Examples:

16 + i (16 + i)(–3 – 7i) (–48 + 7) + (–112 – 3)i –41 – 115i

3 – 13i (3 – 13i)(– 5i) – 65 – 15i – 5(13 + 3i) –13 – 3i

=

=

c + di (c + di)(c – di) c 2 + d 2

=

=

=

– 3 + 7i (–3 + 7i)(–3 – 7i) 9 + 49 58

=

=

=

=

5i (5i)(– 5i) 25 25 5

10/19/16

Properties of Conjugates You have encountered conjugates before! The special factoring A 2 - B 2 = (A + B)(A – B) from algebra involved conjugate binomials. There are other uses for conjugates in algebra. COMPLEX CONJUGATES  Every complex number z = x + yi has a      corresponding conjugate z* = x – yi  Complex conjugates correspond to points on     the complex plane which are “mirror images”     of each other (as shown)  The sum of conjugates is the same as the conjugate of the sum:      z* + w* = (z + w)*  The product of conjugates is the same as the conjugate of the product:    (z*)(w*) = (zw)*  The power of a conjugate is the same as the conjugate of the power:    (z*) n = (z n )* . { (x, y) { . (x, –y)  10/19/16

Properties of Conjugates

You have encountered conjugates before! The special factoring A 2 - B 2 = (A + B)(A – B)

from algebra involved conjugate binomials. There are other uses for conjugates in algebra.

COMPLEX CONJUGATES

  • Every complex number z = x + yi has a corresponding conjugate z* = x – yi
  • Complex conjugates correspond to points on the complex plane which are “mirror images” of each other (as shown)
  • The sum of conjugates is the same as the conjugate of the sum: z* + w* = (z + w)*
  • The product of conjugates is the same as the conjugate of the product: (z*)(w*) = (zw)*
  • The power of a conjugate is the same as the conjugate of the power: (z*) n = (z n )*

.

{

(x, y)

{

.

(x, –y)

10/19/16

Polar Form of Complex Numbers POLAR COORDINATES On the complex plane, the ray of the positive x-axis is called the pole . Each point (x, y) on the plane corresponds to an angle  measured counterclockwise from the pole, and a distance out from the origin r along the ray determined by the angle. . (r,  ) (x, y) r  the pole The relations among x, y, r, and  are:  r =  x 2 + y 2    = tan –1 ( )  x = r cos   y = r sin   For the complex number z = x + yi , r is called the magnitude of z and written |z| .  The angle  is called the argument of z, also written  = arg(z) . The argument of a complex number is not unique; if  = arg(z), then    2  m is also an argument of z.  The relation z = x + yi becomes z = r(cos  + i sin  ) .  Around and around we go.  10/19/16

Polar Form of Complex Numbers

POLAR COORDINATES

On the complex plane, the ray of the positive x-axis is called the pole .

Each point (x, y) on the plane corresponds to an angle measured counterclockwise from the pole, and a distance out from the origin r along the ray determined by the angle.

.

(r,  )

(x, y)

r

the pole

The relations among x, y, r, and  are:

  • r = x 2 + y 2
  • = tan –1 ( )
  • x = r cos
  • y = r sin
  • For the complex number z = x + yi , r is called the magnitude of z and written |z| .
  • The angle  is called the argument of z, also written = arg(z) . The argument of a complex number is not unique; if  = arg(z), then 2 m is also an argument of z.
  • The relation z = x + yi becomes z = r(cos + i sin ) .

Around and around we go.

10/19/16

CiS Notation PRODUCTS and QUOTIENTS We now have a very wonderful result:  z 1 z 2 = r 1 (cos  1 + i sin  1 ) r 2 (cos  2 + i sin  2 )   = r 1 r 2 (cos  1 cos  2 + i 2 sin  1 sin  2 + i (cos  1 sin  2 + sin  1 cos  2 ))   = r 1 r 2 (cos  1 cos  2 – sin  1 sin  2 + i (cos  1 sin  2 + sin  1 cos  2 ))   = r 1 r 2 (cos [  1 +  2 ] + i sin [  1 +  2 ] ) In words, to multiply two complex numbers, simply multiply their magnitudes and add their arguments . For division, such as z 1 /z 2 = r 1 (cos  1 + i sin  1 )/ r 2 (cos  2 + i sin  2 ), we need to take a look at the denominator:   r 2 (cos  2 + i sin  2 )  r 2 (cos  2 + i sin  2 ) r 2 (cos  2 – i sin  2 )     r 2 (cos 2   2 – i 2 sin 2   2 ) r 2 (cos  2 – i sin  2 ) 1 = cos  2 – i sin  2 r 2 –1 (cos  2 – i sin  2 ) = =  10/19/16

CiS Notation

PRODUCTS and QUOTIENTS

We now have a very wonderful result:

z 1 z 2 = r 1 (cos  1 + i sin  1 ) r 2 (cos  2 + i sin  2 )

= r 1 r 2 (cos  1 cos  2 + i 2 sin  1 sin  2 + i (cos  1 sin  2 + sin  1 cos  2 ))

= r 1 r 2 (cos  1 cos  2 – sin  1 sin  2 + i (cos  1 sin  2 + sin  1 cos  2 ))

= r 1 r 2 (cos [ 1 + 2 ] + i sin [ 1 + 2 ] )

In words, to multiply two complex numbers, simply multiply their magnitudes and add their arguments .

For division, such as z 1 /z 2 = r 1 (cos  1 + i sin  1 )/ r 2 (cos  2 + i sin  2 ), we need to take a look at the denominator:

r 2 (cos  2 + i sin  2 ) r 2 (cos  2 + i sin  2 ) r 2 (cos  2 – i sin  2 )

r 2 (cos 2  2 – i 2 sin 2  2 )

r 2 (cos  2 – i sin  2 )

1

=

cos  2 – i sin  2

r 2 –1 (cos 2 – i sin 2 )

=

=

10/19/16

CiS Notation 2 Because of the form of the reciprocal of a complex number we have just investigated, division of complex numbers has a simple formula, just like multiplication:   z 1 /z 2 = r 1 (cos  1 + i sin  1 )/ r 2 (cos  2 + i sin  2 )   = r 1 r 2 –1 (cos [  1 –  2 ] + i sin [  1 –  2 ] )  NOTATION Because of the algebraic form of the argument, c os  + i  s in  , a complex number z = r(cos  + i sin  ) may be written as z = r(cis  ) . This shortened form makes the formulas for multiplication and division much nicer:  Multiplication of complex numbers:   z 1 z 2 = r 1 r 2 cis [  1 +  2 ]  Division of complex numbers:    z 1 /z 2 = r 1 r 2 –1  cis [  1 –  2 ] 10/19/16

CiS Notation 2

Because of the form of the reciprocal of a complex number we have just investigated,

division of complex numbers has a simple formula, just like multiplication:

z 1 /z 2 = r 1 (cos  1 + i sin  1 )/ r 2 (cos  2 + i sin  2 )

= r 1 r 2 –1 (cos [ 1 2 ] + i sin [ 1 2 ] )

NOTATION

Because of the algebraic form of the argument, c os  + i s in  , a complex number

z = r(cos + i sin ) may be written as z = r(cis ) .

This shortened form makes the formulas for multiplication and division much nicer:

  • Multiplication of complex numbers: z 1 z 2 = r 1 r 2 cis [ 1 + 2 ]
  • Division of complex numbers: z 1 /z 2 = r 1 r 2 –1 cis [ 1 2 ]

10/19/16

Practice Problems 1. Add 3i and –5. 2. Add 3 – 5i and its conjugate. 3. Subtract 3 – 5i from its conjugate. 4. (4x – yi) + (x + 3yi) = 5. (– 11 – 2i) – (– 9 – 4i) = 6. (4 + 3i)(4 – 3i) = 7. (4 + 3i)(3 + 4i) = 8. (6 + 3i)  (1 – i) = 9. 1 1 10. (1 – i)(4 + 3i) 11. Show that  2 i  2  is a square root of i. + = 4 + 3i 4 – 3i = (2 + i)(1 + 2i) ( ) + 2 2 12. Two complex numbers are equal  if their real parts are equal and their  imaginary parts are equal.  Solve for a and b so that  ( a + bi)(2 – 3i) = (2 + 3i) + (a + bi).  10/19/16

Practice Problems

1. Add 3i and –5.

2. Add 3 – 5i and its conjugate.

3. Subtract 3 – 5i from its conjugate.

4. (4x – yi) + (x + 3yi) =

5. (– 11 – 2i) – (– 9 – 4i) =

6. (4 + 3i)(4 – 3i) =

7. (4 + 3i)(3 + 4i) =

8. (6 + 3i)  (1 – i) =

9. 1 1

10. (1 – i)(4 + 3i)

11. Show that  2 i  2

is a square root of i.

+

=

4 + 3i 4 – 3i

=

(2 + i)(1 + 2i)

( )

+

2 2

12. Two complex numbers are equal

if their real parts are equal and their

imaginary parts are equal.

Solve for a and b so that

( a + bi)(2 – 3i) = (2 + 3i) + (a + bi).

10/19/16


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 11 класс

Скачать
Complex Numbers

Автор: Balkhozhayeva Aliya Buribayevna

Дата: 30.01.2016

Номер свидетельства: 285248

Похожие файлы

object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(94) "Проект на тему: "Экологические проблемы реки Волги" "
    ["seo_title"] => string(57) "proiekt-na-tiemu-ekologhichieskiie-probliemy-rieki-volghi"
    ["file_id"] => string(6) "240271"
    ["category_seo"] => string(15) "angliiskiyYazik"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1444984126"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(16) "Political system"
    ["seo_title"] => string(16) "political_system"
    ["file_id"] => string(6) "416579"
    ["category_seo"] => string(15) "angliiskiyYazik"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1495091154"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(44) "Конспект урока "Global issues ""
    ["seo_title"] => string(28) "konspekt_uroka_global_issues"
    ["file_id"] => string(6) "533450"
    ["category_seo"] => string(15) "angliiskiyYazik"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1577204666"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(62) "Конспект урока на тему "This is my friend" "
    ["seo_title"] => string(42) "konspiekt-uroka-na-tiemu-this-is-my-friend"
    ["file_id"] => string(6) "166646"
    ["category_seo"] => string(15) "angliiskiyYazik"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1422979119"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(57) "Олимпиада по английскому языку"
    ["seo_title"] => string(31) "olimpiada_po_angliiskomu_iazyku"
    ["file_id"] => string(6) "481260"
    ["category_seo"] => string(15) "angliiskiyYazik"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1539976170"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства