бюджетное общеобразовательное учреждение
Калачинского муниципального района
Омской области
«Кабаньевская редняя общеобразовательная школа»
Утверждаю: директор БОУ «Кабаньевская СОШ» ___________/Матвеева Т.В./ Приказ № ___ от «__»_____________2014г | | Рассмотрено на заседании МО Протокол № ___ от «__»____________2014г. |
Учитель математики Умарова Гульнара Кайроллаевна
Математика
5 класс
2014- 2015 учебный год
Пояснительная записка
Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования, Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2011 г. и «Сборник рабочих программ 5 – 6 классы», - М.: Просвещение, 2012. Составитель Т. А. Бурмистрова.
Примерная программа по математике конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Цели и задачи курса
Целями изучения курса математики в 5 классе являются систематическое развитие
понятия числа, выработка умений выполнять устно и письменно арифметические действия
над числами, переводить практические задачи на язык математики, подготовка учащихся
изучению систематических курсов алгебры и геометрии.
Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.
В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.
Задачи:
овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;
способствовать интеллектуальному развитию, формировать качества личности, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;
воспитывать культуру личности, отношение к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Общая характеристика учебного предмета
Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом.
Без базовой математической подготовки невозможна постановка образования современного человека.
В школе математика служит опорным предметом для изучения смежных дисциплин.
В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И, наконец, всё больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.).
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. И процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умение формулировать, обосновывать и доказывать суждения, тем самым развивая логическое мышление.
Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную, информативную речь, уме-, ние отбирать наиболее подходящие языковые (в частности, символические и графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в её современном толковании является общее знакомство с методами познания действительности.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представление о математике как части общечеловеческой культуры.
Описание места учебного предмета в учебном плане
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 часов из расчета 5 часов в неделю в 5-9 классах. Рабочая программа для 5 класса рассчитана на 5 часов в неделю, общий объем 170 часов. Учитывая важность и объективную трудность этого предмета, педагог может увеличить учебное время до 6 и более уроков в неделю за счет школьного или регионального компонентов.
Изучение учебного курса заканчивается итоговой контрольной работой в письменной форме. Контроль осуществляется в виде самостоятельных работ, письменных тестов, математических диктантов, числовых математических диктантов по теме урока, контрольных работ по разделам учебника. Всего 14 контрольных работ.
Результаты освоения учебного предмета
Изучение математики в основной школе дает возможность учащимся достичь следующих результатов развития:
1) в личностном направлении:
уметь ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
уметь распознавать логически некорректные высказывания, отличать гипотезу от факта, вырабатывать критичность мышления;
представлять математическую науку как сферу человеческой деятельности, представлять этапы её развития и значимость для развития цивилизации;
вырабатывать креативность мышления, инициативу, находчивость, активность при решении математических задач;
уметь контролировать процесс и результат учебной математической деятельности;
вырабатывать способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
2) в метапредметном направлении:
иметь первоначальные представления об идеях и методах математики как об универсальном языке науки и техники, о средствах моделирования явлений и процессов;
уметь видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
уметь выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
уметь применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;
уметь самостоятельно ставить цели, выбирать и создавать алгоритм для решения учебных математических проблем;
уметь планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
3) в предметном направлении:
овладеть базовыми понятиями по основным разделам содержания; представлениями об основных изучаемых понятиях как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
уметь работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики;
развить представления о числе, овладеть навыками устных, письменных, инструментальных вычислений;
уметь измерять длины отрезков, величины углов, использовать формулы для нахождения периметра, площади и объема фигур.
Содержание учебного предмета
Отбор содержания обучения осуществляется на основе следующих дидактических принципов: систематизация знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе усиление общекультурной направленности материала; учёт психолого-педагогических особенностей, актуальных для этого возрастного периода; создание условий для понимания и осознания воспринимаемого материала. В предлагаемом курсе математики выделяются несколько разделов.
Числа и их вычисления.
Натуральные числа. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.
Обыкновенные дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями.
Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление обыкновенных дробей десятичными.
Проценты. Основные задачи на проценты. Решение текстовых задач арифметическими приемами.
Выражения и их преобразование.
Буквенные выражения. Числовые подстановки в буквенное выражение. Вычисления по формулам. Буквенная запись свойств арифметических действий.
Уравнения и неравенства.
Уравнение с одной переменной. Корни уравнения.
Геометрические фигуры и их свойства. Измерение геометрических величин.
Представление о начальных понятиях геометрии и геометрических фигурах. Равенство фигур.
Отрезок. Длина отрезка.
Угол. Виды углов. Градусная мера угла.
Изучение арифметического материала начинается с систематизации и развития знаний о натуральных числах. При этом формирование теоретических знаний сочетается с развитием вычислительной культуры, которая актуальна и при наличии вычислительной техники, в частности, с обучением простейшим приемам прикидки и оценки результатов вычислений. В связи с рассмотрением свойств арифметических действий специальное внимание уделяется преобразованиям числовых выражений, выполняемых с целью рационализации вычислений. Таким образом, учащиеся на доступном материале знакомятся с идеей перехода от одного выражения к другому, ему равному, что в последующем послужит основой при овладении преобразованием буквенных выражений.
Другой крупный блок в содержании арифметической линии - это обыкновенные дроби. Рассмотрение обыкновенных дробей предшествует изучению десятичных дробей, что целесообразно с точки зрения логики развертывания числовой линии: правила действий с десятичными дробями можно будет обосновать уже известными алгоритмами выполнения действий с обыкновенными дробями.
В изучении курса математики происходит знакомство с понятием процента. При обучении решению задач на проценты учащиеся овладевают разнообразными способами рассуждения, при этом они имеют возможность выбора приема и могут пользоваться тем, который кажется им более удобным. Изучение дробей и процентов опирается на предметно-практическую деятельность, на геометрическое моделирование. Широко используются рисунки и чертежи, помогающие разобраться в соответствующих задачах и увидеть путь решения. При обучении решению текстовых задач в 5 классах преимущественно используются арифметические (логические) приемы решения. Помимо текстовых задач, решаемых при отработке вычислительных умений, рассматриваются определенные их виды: задачи на движение, на уравнивание дробей, на нахождение количества выпущенной продукции, производительности труда. Такое выделение методически оправдано. Задачи на движение и задачи на совместную работу составляют значительный пласт текстовых задач, решаемых в школьной математике.
Курс 5 класса освобожден от чрезмерной алгебраизации. Буквенная символика широко используется прежде всего для обозначения чисел, записи общих утверждений и предложений. В учебнике для 5 класса представлена наглядная геометрия, направленная
на развитие образного мышления, пространственного воображения, изобразительных умений. Это первый этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление. Большая роль отводится практической деятельности, опыту, эксперименту. Учащиеся знакомятся с геометрическими фигурами и их конфигурациями на плоскости и в пространстве, учатся изображать их, овладевают некоторыми приемами построения фигур, рассматривают их свойства, знакомятся с геометрическими фактами. Знания, полученные учащимися в начальной школе, систематизируются и расширяются. К работе по данному учебнику для 5 класса можно переходить после любого учебника начальной школы, так как взаимосвязь с этим звеном строится на основе программы и программных требований; его можно использовать и после систем развивающего обучения: готовность школьников к восприятию нового, их познавательная активность будут поддержаны и развиты.
Перечень учебно-методического обеспечения.
1. Вшенкин, Н. Я. Математика. 5 класс: учебник / Н. Я. Виленкин, В. И. Жохов,
A. С. Чесноков, С. И. Шварцбурд. - М.: Мнемозина, 2011.
2. Жохов, В. И. Математика. 5-6 классы. Программа. Планирование учебного материала B.И. Жохов. - М.: Мнемозина, 2011.
3. Жохов, В. И. Преподавание математики в 5 и 6 классах: методические рекомендации
для учителя к учебнику Виленкина Н. Я. [и др.] / В. И. Жохов. - М.: Мнемозина, 2008.
Перечень материально-технического обеспечения.
Интернет-ресурсы:
Я иду на урок математики (методические разработки). - Режим доступа: www.festival. lseptember.ru
Уроки, конспекты. - Режим доступа: wvwv.pedsovet. ru
Информационно-коммуникативные средства:
Презентации по различным темам «Математика. 5 класс».
Видеоуроки по различным темам «Математика 5 класс»
Наглядные пособия:
Портреты великих ученых-математиков.
Демонстрационные таблицы.
Технические средства обучения:
Компьютер.
Видеопроектор.
Учебно-практическое оборудование:
Доска с магнитной поверхностью и набором приспособлений для крепления таблиц, схем.
Ящики для хранения таблиц.
Специализированная мебель:
Компьютерный стол.
Планируемые результаты изучения курса математики в 5 классе
должны знать/понимать:
сущность понятия алгоритма, приводить примеры алгоритмов;
как используются математические формулы и уравнения, примеры их применения для решения математических и практических задач;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
понятия десятичной и обыкновенной дробей, правила выполнения действий с десятичными дробями, обыкновенными дробями с одинаковыми знаменателями, понятие процента;
понятия «уравнение» и «решение уравнения»
смысл алгоритма округления десятичных дробей;
переместительный, распределительный и сочетательный законы;
понятие среднего арифметического;
понятие натуральной степени числа,
определение прямоугольного параллелепипеда и куба, формулы для вычисления длины окружности и площади круга;
должны уметь:
выполнять арифметические действия с десятичными дробями (в том числе устное сложение и вычитание десятичных дробей с двумя знаками);
выполнять сложение и вычитание обыкновенных дробей, имеющих общий знаменатель;
переходить из одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты в виде дроби и дробь в виде процентов, округлять целые числа и десятичные дроби;
выполнять прикидку и оценку значений числовых выражений;
выполнять действия с числами разного знака;
пользоваться основными единицами длины, массы, времени, площади, выражать более крупные единицы через мелкие и наоборот;
находить значения степеней с натуральными показателями;
решать линейные уравнения;
изображать числа точками на координатной прямой;
решать текстовые задачи на дроби и проценты;
вычислять объемы прямоугольного параллелепипеда и куба, находить длину окружности и площадь круга.