Рабочая программа по математике для 5-6 классов общеобразовательных учреждений. Обучение ведется по учебнику "Математика 5 класс", "Математика 6 класс" авторов: Н.Я.Виленкин, В.И.Жохов и др. Программа содержит следующие разделы:
- Пояснительная записка
- Содержание программы
- Требования к математической подготовке учащихся
- Тематическое планирование для 5-6 классов
-Требования к уровню подготовки учащихся к окончанию 6 класса
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Рабочая программа по математике 5-6 класс »
СОГЛАСОВАНО УТВЕРЖДАЮ
Председатель ШМО Директор ГОУ гимназии № 433
___________Н.П.Михайлова _____________Е.М.Волкова
«____»________2013 г. «_____»________2013 г.
РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ
на 2013-2014 учебный год
Предмет: математика
Класс: 6
Учитель: Стасевич Александра Валерьевна
Количество часов на год: 175
Количество часов в неделю: 5
Количество плановых контрольных, практических работ, лабораторных работ:
Четверть
Контрольные работы (час)
Практические работы (час)
Лабораторные работы (час)
1 четверть
3
2 четверть
3
3 четверть
5
4 четверть
4
Итого:
15
Программа (название, автор, год издания): Программа по математике для 5-6-го классов общеобразовательных учреждений, В.И. Жохов, 2010
Учебники (название, автор, издательство, год издания): Математика. 6 класс: учеб. для общеобразоват. Учреждений, Н.Я.Виленкин, В. И. Жохов, А. С.Чесноков, С.И.Шварцбурд, М., «Мнемозина», 2009
Дополнительная литература (рабочие тетради, атласы, сборники задач и т.п.):
1. В.И.Жохов, Л.Б.Крайнева, Математика. 6 класс. Контрольные работы для учащихся общеобразовательных учреждений, М., «Мнемозина», 2008
2. В.И.Жохов, Математический тренажёр. 6 класс: пособие для учителей и учащихся, М.: «Мнемозина», 2010
3. В.И.Жохов, Математические диктанты. 6 класс, М., «Мнемозина», 2010
4. Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 5 класса, М., Классикс Стиль, 2009.
5. И.Л. Гусева, С.А.Пушкин, Н.В.Рыбакова, Сборник тестовых заданий для тематического и итогового контроля. Математика 6 класс, М., «Интеллект-Центр», 2009
6. Попова Л.П. Поурочные разработки по математике: 6 класс, М., ВАКО, 2008
7. Контрольно-измерительные материалы. Математика. К учебнику Н. Я. Виленкина и др. (М.: Мнемозина), 6 класс, М., Вако, 2010.
Цели обучения математике. Цели обучения математике в общеобразовательной школе определяются ее ролью в развитии общества в целом и в развитии интеллекта, формировании личности каждого человека.
Многим людям в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации. Таким образом, практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте людей, до достаточно сложных, необходимых для развития научных и технологических идей.
Без базовой математической подготовки невозможно достичь высокого уровня образования, так как все больше специальностей связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и многие другие). Следовательно, расширяется круг школьников, для которых математика становится профессионально значимым предметом.
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. С помощью объектов математических умозаключений и правил их конструирования вскрывается механизм логических построений, вырабатываются умения формулировать, обосновывать и доказывать суждения, тем самым развивается логическое мышление.
Математике принадлежит ведущая роль в формировании алгоритмического мышления, воспитании умения действовать по заданным алгоритмам и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.
Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную и информативную устную и письменную речь, умение отбирать наиболее подходящие языковые (в частности, символические и графические) средства. В решении задачи формирования у учащихся грамотной математической речи учителю поможет систематическое Использование на уроках математических диктантов.
Математическое образование вносит свой вклад в формирование общей культуры человека. Ее необходимым компонентом является общее знакомство с методами познания действительности, что включает понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Изучение математики развивает воображение, пространственные представления. История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека. Материалы об истории математики помещены в учебнике, дополнительные сведения и богатые материалы для внеклассной работы учитель найдет в книге И. Я. Депмана, Н. Я. Виленкина «За страницами учебника математики».
Таким образом, значимость математической подготовки в общем образовании современного человека повлияла на определение следующих целей обучения математике в школе:
овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;
интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе;
формирование представлений о математических идеях и методах;
формирование представлений о математике как форме описания и методе познания действительности;
формирование представлений о математике как части общечеловеческой культуры, понимания значимости математики для общественного прогресса.
Организацияучебно-воспитательного процесса. Образовательные и воспитательные задачи обучения математике должны решаться комплексно с учетом возрастных особенностей учащихся. Законом об образовании учителю предоставляется право самостоятельного выбора методических путей и приемов решения этих задач.
Принципиальным положением организации школьного математического образования в основной школе становится уровневая дифференциация обучения. Это означает, что, осваивая общий курс, одни школьники в своих результатах ограничиваются уровнем обязательной подготовки, зафиксированным в образовательном стандарте, другие в соответствии со своими склонностями и способностями достигают более высоких рубежей. При этом каждый имеет право самостоятельно решить, ограничиться минимальным уровнем или же продвигаться дальше. Именно на этом пути осуществляются гуманистические начала в обучении математике.
Фундаментом математических умений школьников являются навыки вычислений на разных числовых множествах. А основой для них, в свою очередь, служат навыки устных вычислений, которые являются неотъемлемой частью любых письменных расчетов, служат основой для прикидки результата и т. д. Кроме того, устные вычисления — эффективный способ развития у детей устойчивого внимания, оперативной памяти и других важных для обучения качеств. На формирование навыков устных вычислений нацелены специальные пособия — математические тренажеры [8], которые необходимо использовать на каждом уроке на этапе устной работы.
В организации учебно-воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения и математического развития школьников. Следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач.
Необходимо всемерно способствовать удовлетворению потребностей и запросов школьников, проявляющих интерес, склонности и способности к математике. Такие учащиеся должны получать индивидуальные задания (и в первую очередь нестандартные математические задачи), их следует привлекать к оказанию помощи одноклассникам, к участию в математических кружках, олимпиадах, факультативных занятиях; желательно рекомендовать им дополнительную литературу. Развитие интереса к математике у школьников является важнейшей задачей учителя.
Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, ее оптимизация с учетом возраста учащихся, уровня их математической подготовки, развития общеучебных умений, специфики решаемых образовательных и воспитательных задач. В зависимости от указанных факторов учителю необходимо реализовать сбалансированное сочетание традиционных и новых методов обучения, оптимизировать применение объяснительно-иллюстративных и эвристических методов, использование временных технических средств.
Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда — планирование своей работы, поиск рациональных путей ее выполнения, критическую оценку результатов.
Целями изучения курса математики в 5—6-м классах являются: систематическое развитие понятия числа; выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики; подготовка учащихся к изучению систематических курсов алгебры и геометрии.
Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.
В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.
Структура программы. Программа по математике для 5—6-го классов общеобразовательных учреждений состоит из двух разделов: Содержание программы, Требования к математической подготовке учащихся. К программе прилагаются Тематическое и Примерное поурочное планирование учебного материала.
Раздел Содержание программы включает в себя минимальный объем материала, обязательного для изучения. Содержание здесь распределено не в соответствии с порядком изложения, принятым в учебнике, а по основным содержательным линиям, объединяющим связанные между собойвопросы. Это позволяетучителю, отвлекаясь от места конкретнойтемы в курсе, оценить ее значение по отношению к соответствующей содержательной линии, правильно определить и расставить акценты в обучении, организовать итоговое повторение материала.
В разделе Требования к математической подготовке учащихся определяется итоговый уровень умений и навыков, которыми учащиеся должны владеть по окончании данного этапа обучения. Требования распределены по основным содержательным линиям курса и характеризуют тот безусловный минимум, которого должны достичь все учащиеся.
В разделах Тематическое планирование и Примерное поурочное планирование приводится конкретное планирование, ориентированное на учебники математики для 5-го и 6-го классов Н. Я. Виленкина и др.
СОДЕРЖАНИЕ ПРОГРАММЫ
Числа и вычисления
Натуральные числа. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Степень с натуральным показателем.
Делители и кратные числа. Признаки делимости. Простые числа. Разложение числа на простые множители.
Обыкновенные дроби. Основное свойство дроби. Сокращение дробей. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части числа и числа по его части.
Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление обыкновенных дробей десятичными. Среднее арифметическое.
Отношения. Пропорции. Основное свойство пропорции.
Проценты. Основные задачи на проценты.
Решение текстовых задач арифметическими приемами.
Положительные и отрицательные числа. Противоположные числа. Модуль числа. Сравнение чисел. Арифметические действия с положительными и отрицательными числами, свойства арифметических действий.
Рациональные числа. Изображение чисел точками координатной прямой.
Приближенные значения. Округление натуральных чисел и десятичных дробей. Прикидка результатов вычислений.
Выражения и их преобразования
Буквенные выражения. Числовые подстановки в буквенные выражения. Вычисления по формулам. Буквенная запись свойств арифметических действий.
Уравнения и неравенства
Уравнение с одной переменной. Корни уравнения. Решение текстовых задач методом составления уравнений.
Числовые неравенства.
Функции
Прямоугольная система координат на плоскости.
Таблицы и диаграммы. Графики реальных процессов.
Геометрические фигуры и их свойства. Измерение геометрических величин
Представление о начальных понятиях геометрии и геометрических фигурах. Равенство фигур.
Отрезок. Длина отрезка и ее свойства. Расстояние между точками.
Угол. Виды углов. Градусная мера угла.
Параллельные прямые. Перпендикулярные прямые.
Многоугольники. Правильные многоугольники.
Окружность и круг. Длина окружности. Площадь круга.
Формула объема прямоугольного параллелепипеда.
Множества и комбинаторика
Множество. Элемент множества, подмножество. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.
ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ
УЧАЩИХСЯ
Числа и вычисления
В результате изучения курса математики учащиеся должны:
правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, рациональное, иррациональное, положительное, десятичная дробь и др.; переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной, проценты — в виде десятичной или обыкновенной дроби);
сравнивать числа, упорядочивать наборы чисел; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой;
выполнять арифметические действия с рациональными числами, находить значения степеней; сочетать при вычислениях устные и письменные приемы;
составлять и решать пропорции, решать основные задачи на дроби, проценты;
округлять целые числа и десятичные дроби,производить прикидку результата вычислений.
Выражения и их преобразования
В результате изучения курса математики учащиесядолжны:
правильно употреблять термины «выражение», «числовое выражение », « буквенное выражение », « значение выражения », понимать их использование в тексте, в речи учителя, понимать формулировку заданий: «упростить выражение», «найти значение выражения», «разложить на множители»;
составлять несложные буквенные выражения и формулы; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления; выражать из формул одни переменные через другие;
находить значение степени с натуральным показателем.
Уравнения и неравенства
В результате изучения курса математики учащиеся должны:
понимать, что уравнения — это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики;
правильно употреблять термины «уравнение», «неравенство», «корень уравнения»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить уравнение, неравенство»;
решать линейные уравнения с одной переменной.
Функции
В результате изучения курса математики учащиеся должны:
познакомиться с примерами зависимостей между реальными величинами (прямая и обратная пропорциональности, линейная функция);
познакомиться с координатной плоскостью, знать порядок записи координат точек плоскости и их названий, уметь построить координатные оси, отметить точку по заданным координатам, определить координаты точки, отмеченной на координатной плоскости;
находить в простейших случаях значения функций, заданных формулой, таблицей, графиком;
интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы.
Геометрические фигуры и их свойства. Измерение геометрических величин
В результате изучения курса математики учащиеся должны:
распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, многоугольники, окружности, круги); изображать указанные геометрические фигуры; выполнять чертежи по условию задачи;
владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;
— решать задачи на вычисление геометрических величин (длин, углов, площадей, объемов), применяя изученные свойства фигур и формулы.
ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА
В учебном плане для основной школы указано минимальное число учебных часов, отводимых на изучение математики в каждом классе. Школа в зависимости от конкретных условий обучения, особенностей учащихся, направленности педагогического процесса вправе увеличить это число часов за счет использования школьного компонента и других источников.
Отметим, что, как неоднократно указывалось в методических документах Министерства образования и науки Российской Федерации, уменьшение учебного времени на изучение курса математики в школе не только отрицательно сказывается на собственно математических познаниях и на развитии учащихся, приводит зачастую к непреодолимым трудностям в дальнейшей работе учителя, но и является причиной заметного снижения уровня знаний и умений учащихся и по другим школьным дисциплинам. Поэтому руководителям образовательного учреждения, методическому объединению учителей математики необходимо весьма ответственно подходить к выбору учебного плана.
МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ
Базисный учебный (образовательный) план на изучение математики в 5 – 6 классах основной школы отводит 5 часов в неделю в течение каждого года обучения, по 175 часов в год.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
Учебники: «Математика—5», «Математика—б»,
авт.: Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд
(М.: Мнемозина, 2005—2009).
5 класс
(5 ч в неделю, всего 170 ч)
1. Натуральные числа и шкалы (15 ч)
Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, многоугольник. Измерение и построение отрезков.
Координатный луч.
Основная цель — систематизировать и обобщать сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.
Систематизация сведений о натуральных числах позволяет восстановить у учащихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков.
Рассматриваются простейшие комбинаторные задачи.
В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному штриху на координатном луче.
Сложение и вычитание натуральных чисел (21 ч)
Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.
Основная цель — закрепить и развить навыки сложения и вычитания натуральных чисел.
Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.
В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложения и вычитания).
Умножение и деление натуральных чисел (27 ч)
Умножение и деление натуральных чисел, свойства умножения. Степень числа. Квадрат и куб числа. Решение текстовых задач.
Основная цель — закрепить и развить навыки арифметических действий с натуральными числами.
В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводится понятие степени (с натуральным показателем), квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.
Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на ... (в ... раз)», «меньше на ... (в ... раз)», а также задачи на известные учащимся зависимости между величинами (скоростью, временем и пройденным путем; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнения так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решения таких задач предшествуют преобразования соответствующих буквенных выражений.
Площади и объемы (12 ч)
Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.
Основная цель — расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.
При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.
Обыкновенные дроби (23 ч)
Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.
Основная цель — познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.
В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа и представлению смешанного числа в виде неправильной дроби. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся.
Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч)
Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей. Решение текстовых задач.
Основная цель — выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.
При введении десятичных дробей важно добиться того, чтобы у учащихся сформировалось четкое представление о десятичных разрядах рассматриваемых чисел, умение читать, записывать, сравнивать десятичные дроби. Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.
Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.
При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.
Умножение и деление десятичных дробей (26 ч)
Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.
Основная цель — выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.
Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.
Инструменты для вычислений и измерений (17 ч)
Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол. Величина (градусная мера) угла. Чертежный треугольник. Измерение углов. Построение угла заданной величины.
Основная цель — сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.
Важно выработать содержательное понимание у учащихся смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого.
Продолжается работа по распознаванию и изображению геометрических фигур. Важно уделить внимание формированию умений проводить измерение и построение углов.
Круговые диаграммы дают представление учащимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.
Повторение. Решение задач (16 ч)
6 класс
(5 ч в неделю, всего 170 ч)
1. Делимость чисел (20ч)
Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители.
\ Основная цель — завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.
В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения — прямым подбором.
Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.
Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6 • 6 = 4 • 9 = 2 • 18 и т. п. Умения разложить число на простые множители не обязательно добиваться от всех учащихся.
Сложение и вычитание дробей с разными знаменателями (22 ч)
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.
Основная цель — выработать прочные навыки преобразования дробей, сложения и вычитания дробей.
Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. Умение приводить дроби к общему знаменателю используется для сравнения дробей.
При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа.
Умножение и деление обыкновенных дробей (31 ч)
Умножениеи деление обыкновенных дробей. Основные задачи надроби.
Основная цель — выработать прочные навыкиарифметических действий с обыкновенными дробями и решения основных задач на дроби.
В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.
Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби.
Отношения и пропорции (18 ч)
Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональности величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.
Основная цель — сформировать понятия пропорции, прямой и обратной пропорциональности величин.
Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.
Понятия о прямой и обратной пропорциональности величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.
В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.
Положительные и отрицательные числа (13 ч)
Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координата точки.
Основная цель — расширить представления учащихся о числе путем введения отрицательных чисел.
Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой. В дальнейшем она будет служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел.
Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем и для овладения алгоритмами арифметических действий с положительными и отрицательными числами.
6. Сложение и вычитание положительных и отрицательных чисел (11ч)
Сложение и вычитание положительных и отрицательных чисел.
Основная цель — выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.
Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек координатной прямой. При изучении данной темы отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.
Умножение и деление положительных и отрицательных чисел (12 ч)
Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.
Основная цель — выработать прочные навыки арифметических действий с положительными и отрицательными числами.
Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.
При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить (если это возможно) числитель на знаменатель. В каждом конкретном случае они должны знать, в какую дробь обращается данная обыкновенная дробь — в десятичную или периодическую. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как
, , , , , .
Решение уравнений(15 ч)
Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.
Основная цель — подготовить учащихся к выполнению преобразований выражений, решению уравнений.
Преобразования буквенных выражений путем раскрытия скобок и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений.
Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приемами решения линейных уравнений с одной переменной.
Координаты на плоскости (13 ч)
Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.
Основная цель — познакомить учащихся с прямоугольной системой координат на плоскости.
Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и чертежного треугольника, не требуя воспроизведения точных определений.
Основным результатом знакомства учащихся с координатной плоскостью должны стать знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным координатам, определить координаты точки, отмеченной на координатной плоскости.
Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.
Повторение. Решение задач (13 ч)
Требования к уровню подготовки учащихся к окончанию 6 класса
В результате освоения курса математики 6 класса учащиеся должны овладеть следующими знаниями, умениями и навыками.
Личностным результатом изучения предмета является формирование следующих умений и качеств:
независимость и критичность мышления;
воля и настойчивость в достижении цели.
Метапредметным результатом изучения курса является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
самостоятельно обнаруживать и формулировать учебную проблему, определять цель УД;
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
работая по плану, сверять свои действия с целью и при необходимости исправлять ошибки самостоятельно (в том числе и корректировать план);
в диалоге с учителем совершенствовать самостоятельно выбранные критерии оценю!.
Познавательные УУД:
проводить наблюдение и эксперимент под руководством учителя;
осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
анализировать, сравнивать, классифицировать и обобщать факты и явления;
давать определения понятиям.
Коммуникативные УУД:
самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т. д.);
в дискуссии уметь выдвинуть аргументы и контраргументы;
учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его;
понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории).
Предметным результатом изучения курса является сформированность следующих умений.
Предметная область «Арифметика»
Выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь - в виде процентов;
выполнять арифметические действия с рациональными числами, находить значения числовых выражений (целых и дробных);
округлять целые числа и десятичные дроби, выполнять оценку числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; переводить одни единицы измерения в другие;
решать текстовые задачи, в том числе связанные с отношениями и с пропорциональностью величин, дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора;
устной прикидки и оценки результата вычислений;
интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Предметная область «Алгебра»
Переводить условия задачи на математический язык; использовать методы работы с математическими моделями;
осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;
определять координаты точки и изображать числа точками на координатной прямой;
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;
решать текстовые задачи алгебраическим методом.
Использовать приобретенные знания и умения
в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами.
Предметная область «Геометрия»
Пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры, распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела;
в простейших случаях строить развертки пространственных тел;
вычислять площади, периметры, объемы простейших геометрических фигур (тел) по формулам.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения несложных геометрических задач, связанных с нахождением изученных геометрических величин (используя при необходимости справочники и технические средства);
На изучение предмета отводится 5 часов в неделю, итого 170 часов за учебный год. В конце изучения каждого параграфа предусмотрен резервный урок, который может быть использован для решения практико-ориентированных задач, нестандартных задач по теме. Предусмотрены 14 тематических контрольных работ и 1 итоговая.