kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Конспект урока на тему "Двоичная система счисления"

Нажмите, чтобы узнать подробности

Цели урока: 

1.Обучающая – формирование новых знаний, умений и навыков по теме “Двоичная система счисления”, осознанное понимание представления чисел в двоичной системе счисления, перевода десятичных чисел в двоичную систему счисления, контроль за усвоением учебного материала.

2.Развивающая – развивать мышление учащихся посредством анализа, сравнения и обобщения изучаемого материала, самостоятельность, развитие речи, активизировать познавательную деятельность учащихся;

3.Воспитательная – активизация познавательной и творческой активности учащихся, воспитание чувства ответственности, коммуникативности,

Тип урока: изучение нового материала.

Вид урока: комбинированный, продолжительность 45 минут.

Возраст учащихся: 9 класс.

Ход урока

1.Организационный момент.

2.Повторение и обобщение предыдущих знаний.

Разминка для ума (ребята отвечают на вопросы):

  • Действие производимое с клавишей (нажатие)
  • Неправильная запись в программе (ошибка)
  • Переведите на английский язык слово «вычислять» (компьютер)
  • Ноль или единица в информатике (бит)
  • Строго определенная последовательность действий при решении задачи (алгоритм)
  • Указание исполнителю (команда)
  • Графический способ представления информации (блок-схема)
  • Символ - разделитель (пробел)
  • Простейший прибор для вычислений (счеты)
  • Гибкий магнитный диск (дискета)
  • Так называют специалистов в своей области (ас)
  • Процедура «альтернатива», как ее можно назвать иначе? (ветвление, выбор)
  • «Мозг» компьютера (процессор)
  • Взломщик компьютерных программ (хакер)
  • Многократно повторяющаяся часть алгоритма (программы) (цикл)
  • Печатающее устройство (принтер)
  • Указатель местоположения на экране (курсор)
  • Состояние, в котором включенный компьютер не реагирует на действия пользователя (зависание)
  • Место хранения информации (память)
  • Всемирная глобальная сеть (Интернет)
  • Карманное вычислительное устройство (калькулятор)

 3. Подготовка к восприятию нового материала, мотивация.

-Сегодня на уроке вы имеете возможность показать свои знания не только по информатике, но и по математике.

- Вопросы ученикам:

1. С каким универсальным техническим устройством мы работаем на уроках информатики? (Это устройство называется компьютер).

2. Для чего была изобретена ЭВМ? (ЭВМ изобретена для работы с числами).

3. Зачем нужны числа? (Для практических вычислений)

4. На каком школьном учебном предмете вас учат работать с числами?

(С числами работаем на математике).

5. Сколько цифр используется для представления чисел? (10: 0,1,2,3,4,5,6,7,8,9)

6. Какие сигналы используются в компьютере и как они обозначаются?

(включено, выключено; 0,1)

7. Сколько цифр используется? (Используется 2 цифры: 0 и 1).

8. Какая это система счисления? (Это двоичная система счисления).

- Итак, тема сегодняшнего нашего урока звучит:   “Двоичная система счисления”.

 

 Сегодня мы с вами познакомимся с 2СС и научимся  работать с двоичными числами:

переводить из двоичной в десятичную СС

переводить из десятичной в двоичную СС

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в ЭВМ двоичная система счисления.

В ЭВМ используют двоичную систему, потому что она имеет ряд преимуществ перед другими системами:

для ее реализации нужны технические элементы с двумя возможными состояниями (есть ток, нет тока; включено, выключено и т.д., одному из состояний ставится в соответствие 1, другому – 0), а не десять, как в десятичной системе;

представление информации посредством только двух состояний надежно и помехоустойчиво;

упрощается выполнение арифметических действий;

возможность использовать аппарат булевой алгебры для выполнения логической преобразований информации.

- В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.).

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

4.Перевод чисел из двоичной системы счисления в десятичную.

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710

- Затем ребята составляют  таблицу перевода десятичных чисел от 0 до 20 в двоичную систему счисления.

десятичное

число

двоичное число

десятичное

число

двоичное число

0

0000

11

1011

1

0001

12

1100

2

0010

13

1101

3

0011

14

1110

4

0100

15

1111

5

0101

16

10000

6

0110

17

10001

7

0111

18

10010

8

1000

19

10011

9

1001

20

10100

10

1010

и т.д.

 

Вывод: недостаток двоичной системы – это быстрый рост числа разрядов, необходимых для записи чисел.

Учитель: оказывается, что мы с вами повторили открытие одного немецкого ученого математика Вильгельм Готфрид Лейбниц (1646-1716). Медаль, нарисованная В.Г Лейбницем, поясняет соотношение между двоичной и десятичной системами счисления.

Начиная со студенческих лет и до конца жизни великий европеец, немецкий ученый Вильгельм Готфрид Лейбниц (1646-1716), занимался исследованием свойств двоичной системы счисления, ставшей в дальнейшем основной при создании компьютеров. Он придавал ей некий мистический смысл и считал, что на ее базе можно создать универсальный язык для объяснения явлений мира и использования во всех науках, в том числе в философии. Сохранилось изображение медали, нарисованное В. Лейбницем в 1697 г., поясняющее соотношение между двоичной и десятичной системами исчисления. На ней была изображена табличка из двух столбцов, в одном числа от 0 до 17 в десятичной системе, а в другом – те же числа в двоичной системе счисления. Вверху была надпись: «2,3,4,5 и т.д. Для получения их всех из нуля достаточно единицы». Внизу же гласила надпись: «Картина создания. Изобрёл ГГЛ. МDС XCYII».

5.Физкультминутка.

6.Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77.

7.Решение задач.

1.Здесь зашифрована известная русская поговорка. Прочитайте ее, двигаясь с помощью двоичных цифр в определенной последовательности. (смотри презентацию)

2.Каждой букве в слове поставить порядковый номер в русском алфавите, найти сумму получившихся чисел, затем перевести полученное число в двоичную систему счисления.

1. Файл                       Ответ: Файл = 22 + 1 + 11 + 13 = 4710 = 1011112

2. Диск                       Ответ: Диск = 5 + 10 + 19 + 12 = 4610 = 1011102

3. Байт                       Ответ: Байт = 2 + 1 + 11 + 20 = 3410 = 1000102

4. Меню                     Ответ: Меню = 14 + 6 + 15 + 32 = 6710 = 10000112

3.Как изменится двоичное число 10111, если:
А) заменить последнюю 1 на 0;
В) заменить первую 1 на 0;
С) приписать справа 0?
Ответ: А) 10110; В) 111; С) 101110.

4. Решить самостоятельно- смотри архив

8. Подведение итогов и задание на дом.

- Что такое двоичная система счисления?

-Чем хороша двоичная система счисления?

-Недостаток двоичной системы счисления.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Конспект урока на тему "Двоичная система счисления" »

Тема урока: Двоичная система счисления

Цели урока: 

1.Обучающая – формирование новых знаний, умений и навыков по теме “Двоичная система счисления”, осознанное понимание представления чисел в двоичной системе счисления, перевода десятичных чисел в двоичную систему счисления, контроль за усвоением учебного материала.

2.Развивающая – развивать мышление учащихся посредством анализа, сравнения и обобщения изучаемого материала, самостоятельность, развитие речи, активизировать познавательную деятельность учащихся;

3.Воспитательная – активизация познавательной и творческой активности учащихся, воспитание чувства ответственности, коммуникативности,

Тип урока: изучение нового материала.

Вид урока: комбинированный, продолжительность 45 минут.

Возраст учащихся: 9 класс.

Ход урока

1.Организационный момент.

2.Повторение и обобщение предыдущих знаний.

Разминка для ума (ребята отвечают на вопросы):

  • Действие производимое с клавишей (нажатие)

  • Неправильная запись в программе (ошибка)

  • Переведите на английский язык слово «вычислять» (компьютер)

  • Ноль или единица в информатике (бит)

  • Строго определенная последовательность действий при решении задачи (алгоритм)

  • Указание исполнителю (команда)

  • Графический способ представления информации (блок-схема)

  • Символ - разделитель (пробел)

  • Простейший прибор для вычислений (счеты)

  • Гибкий магнитный диск (дискета)

  • Так называют специалистов в своей области (ас)

  • Процедура «альтернатива», как ее можно назвать иначе? (ветвление, выбор)

  • «Мозг» компьютера (процессор)

  • Взломщик компьютерных программ (хакер)

  • Многократно повторяющаяся часть алгоритма (программы) (цикл)

  • Печатающее устройство (принтер)

  • Указатель местоположения на экране (курсор)

  • Состояние, в котором включенный компьютер не реагирует на действия пользователя (зависание)

  • Место хранения информации (память)

  • Всемирная глобальная сеть (Интернет)

  • Карманное вычислительное устройство (калькулятор)

 3. Подготовка к восприятию нового материала, мотивация.

-Сегодня на уроке вы имеете возможность показать свои знания не только по информатике, но и по математике.

- Вопросы ученикам:

1. С каким универсальным техническим устройством мы работаем на уроках информатики? (Это устройство называется компьютер).

2. Для чего была изобретена ЭВМ? (ЭВМ изобретена для работы с числами).

3. Зачем нужны числа? (Для практических вычислений)

4. На каком школьном учебном предмете вас учат работать с числами?

(С числами работаем на математике).

5. Сколько цифр используется для представления чисел? (10: 0,1,2,3,4,5,6,7,8,9)

6. Какие сигналы используются в компьютере и как они обозначаются?

(включено, выключено; 0,1)

7. Сколько цифр используется? (Используется 2 цифры: 0 и 1).

8. Какая это система счисления? (Это двоичная система счисления).

- Итак, тема сегодняшнего нашего урока звучит:   “Двоичная система счисления”.

 Сегодня мы с вами познакомимся с 2СС и научимся  работать с двоичными числами:

переводить из двоичной в десятичную СС

переводить из десятичной в двоичную СС

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в ЭВМ двоичная система счисления.

В ЭВМ используют двоичную систему, потому что она имеет ряд преимуществ перед другими системами:

для ее реализации нужны технические элементы с двумя возможными состояниями (есть ток, нет тока; включено, выключено и т.д., одному из состояний ставится в соответствие 1, другому – 0), а не десять, как в десятичной системе;

представление информации посредством только двух состояний надежно и помехоустойчиво;

упрощается выполнение арифметических действий;

возможность использовать аппарат булевой алгебры для выполнения логической преобразований информации.

- В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.).

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

4.Перевод чисел из двоичной системы счисления в десятичную.

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710

- Затем ребята составляют  таблицу перевода десятичных чисел от 0 до 20 в двоичную систему счисления.

десятичное

число

двоичное число

десятичное

число

двоичное число

0

0000

11

1011

1

0001

12

1100

2

0010

13

1101

3

0011

14

1110

4

0100

15

1111

5

0101

16

10000

6

0110

17

10001

7

0111

18

10010

8

1000

19

10011

9

1001

20

10100

10

1010

и т.д.

 

Вывод: недостаток двоичной системы – это быстрый рост числа разрядов, необходимых для записи чисел.

Учитель: оказывается, что мы с вами повторили открытие одного немецкого ученого математика Вильгельм Готфрид Лейбниц (1646-1716). Медаль, нарисованная В.Г Лейбницем, поясняет соотношение между двоичной и десятичной системами счисления.

Начиная со студенческих лет и до конца жизни великий европеец, немецкий ученый Вильгельм Готфрид Лейбниц (1646-1716), занимался исследованием свойств двоичной системы счисления, ставшей в дальнейшем основной при создании компьютеров. Он придавал ей некий мистический смысл и считал, что на ее базе можно создать универсальный язык для объяснения явлений мира и использования во всех науках, в том числе в философии. Сохранилось изображение медали, нарисованное В. Лейбницем в 1697 г., поясняющее соотношение между двоичной и десятичной системами исчисления. На ней была изображена табличка из двух столбцов, в одном числа от 0 до 17 в десятичной системе, а в другом – те же числа в двоичной системе счисления. Вверху была надпись: «2,3,4,5 и т.д. Для получения их всех из нуля достаточно единицы». Внизу же гласила надпись: «Картина создания. Изобрёл ГГЛ. МDС XCYII».

5.Физкультминутка.

6.Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77.

7.Решение задач.

1.Здесь зашифрована известная русская поговорка. Прочитайте ее, двигаясь с помощью двоичных цифр в определенной последовательности. (смотри презентацию)

2.Каждой букве в слове поставить порядковый номер в русском алфавите, найти сумму получившихся чисел, затем перевести полученное число в двоичную систему счисления.

1. Файл                       Ответ: Файл = 22 + 1 + 11 + 13 = 4710 = 1011112

2. Диск                       Ответ: Диск = 5 + 10 + 19 + 12 = 4610 = 1011102

3. Байт                       Ответ: Байт = 2 + 1 + 11 + 20 = 3410 = 1000102

4. Меню                     Ответ: Меню = 14 + 6 + 15 + 32 = 6710 = 10000112

3.Как изменится двоичное число 10111, если:
А) заменить последнюю 1 на 0;
В) заменить первую 1 на 0;
С) приписать справа 0?
Ответ: А) 10110; В) 111; С) 101110.

4. Решить самостоятельно- смотри архив

8. Подведение итогов и задание на дом.

- Что такое двоичная система счисления?

-Чем хороша двоичная система счисления?

-Недостаток двоичной системы счисления.




Получите в подарок сайт учителя

Предмет: Информатика

Категория: Уроки

Целевая аудитория: 9 класс.
Урок соответствует ФГОС

Скачать
Конспект урока на тему "Двоичная система счисления"

Автор: Никулина Татьяна Михайловна

Дата: 30.10.2014

Номер свидетельства: 124164

Похожие файлы

object(ArrayObject)#862 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(81) "Конспект урока "Двоичная система счисления" "
    ["seo_title"] => string(48) "konspiekt-uroka-dvoichnaia-sistiema-schislieniia"
    ["file_id"] => string(6) "124156"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1414652264"
  }
}
object(ArrayObject)#884 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(185) "«Конспект урока в контексте системно-деятельностного подхода по теме «Двоичная система счисления»»"
    ["seo_title"] => string(80) "konspiekt_uroka_v_kontiekstie_sistiemno_dieiatiel_nostnogho_podkhoda_po_tiemie_d"
    ["file_id"] => string(6) "358580"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1479061114"
  }
}
object(ArrayObject)#862 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(215) "Курсовая работа «Конспект урока в контексте системно-деятельностного подхода по теме «Двоичная система счисления»»"
    ["seo_title"] => string(80) "kursovaia_rabota_konspiekt_uroka_v_kontiekstie_sistiemno_dieiatiel_nostnogho_pod"
    ["file_id"] => string(6) "358582"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1479061450"
  }
}
object(ArrayObject)#884 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(173) "Конспект урока на тему: "Система счисления. Перевод чисел из одной системы счисления в другой." "
    ["seo_title"] => string(105) "konspiekt-uroka-na-tiemu-sistiema-schislieniia-pierievod-chisiel-iz-odnoi-sistiemy-schislieniia-v-drughoi"
    ["file_id"] => string(6) "136214"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1417072628"
  }
}
object(ArrayObject)#862 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(129) "Конспект урока с использованием ЦОР (ЭОР) "Двоичная система счисления" "
    ["seo_title"] => string(75) "konspiekt-uroka-s-ispol-zovaniiem-tsor-eor-dvoichnaia-sistiema-schislieniia"
    ["file_id"] => string(6) "105351"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1402843708"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства