kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Технические средства информационных технологий

Нажмите, чтобы узнать подробности

Технические средства информационных технологий

Принципы построения компьютера

История и тенденции развития вычислительной техники

В 1946 году появилась первая электронная вычислительная машина (компьютер), что явилось громадным достижением человечества. В реализации проекта принимали активное участие такие крупные ученые, как К. Шеннон, Н. Виннер, Дж. фон Нейман и др. С этого момента началась эра вычислительной техники. За прошедшее время вычислительная техника, микроэлектроника и вся индустрия информатики стали одной из основных составляющих мирового научно-технического прогресса. Их развитие осуществлялось темпами, которых не знала ни одна отрасль деятельности человека. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться. В настоящее время компьютеры используются не только для автоматизации сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.п.

Математические основы автоматических вычислений были уже разработаны ранее (Г. Лейбниц, Дж. Буль, A.Тьюринг и др.), но появление компьютеров стало возможным только благодаря развитию электронной техники. Многократные попытки создания разного рода автоматических вычислительных устройств (от простейших счетов до механических и электромеханических вычислителей) не привели к созданию надежных и экономически эффективных машин.

Появление электронных схем сделало возможным построение электронных вычислительных машин.

Электронная вычислительная машина (ЭВМ), или компьютер, - это комплекс аппаратных и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Следует отметить, что в настоящее время термин "электронная вычислительная машина" практически не используется, уступив место термину "компьютер".

Под пользователем понимают человека, в интересах которого проводится обработка данных. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы.

Компьютеры являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. Однако подготовка задач к решению была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователей во многих случаях специальных знаний и навыков. Как правило, время подготовки задач во много раз превышает время их решения.

Для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и компьютера в целом, а также облегчения их эксплуатации создается специальный комплекс программных средств. Обычно аппаратные и программные средства взаимосвязаны и объединяются в одну структуру.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Технические средства информационных технологий »

Лекция 13: 

Технические средства информационных технологий

Принципы построения компьютера

История и тенденции развития вычислительной техники

В 1946 году появилась первая электронная вычислительная машина (компьютер), что явилось громадным достижением человечества. В реализации проекта принимали активное участие такие крупные ученые, как К. Шеннон, Н. Виннер, Дж. фон Нейман и др. С этого момента началась эра вычислительной техники. За прошедшее время вычислительная техника, микроэлектроника и вся индустрия информатики стали одной из основных составляющих мирового научно-технического прогресса. Их развитие осуществлялось темпами, которых не знала ни одна отрасль деятельности человека. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться. В настоящее время компьютеры используются не только для автоматизации сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.п.

Математические основы автоматических вычислений были уже разработаны ранее (Г. Лейбниц, Дж. Буль, A. Тьюринг и др.), но появление компьютеров стало возможным только благодаря развитию электронной техники. Многократные попытки создания разного рода автоматических вычислительных устройств (от простейших счетов до механических и электромеханических вычислителей) не привели к созданию надежных и экономически эффективных машин.

Появление электронных схем сделало возможным построение электронных вычислительных машин.

Электронная вычислительная машина (ЭВМ), или компьютер, - это комплекс аппаратных и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Следует отметить, что в настоящее время термин "электронная вычислительная машина" практически не используется, уступив место термину "компьютер".

Под пользователем понимают человека, в интересах которого проводится обработка данных. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы.

Компьютеры являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. Однако подготовка задач к решению была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователей во многих случаях специальных знаний и навыков. Как правило, время подготовки задач во много раз превышает время их решения.

Для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и компьютера в целом, а также облегчения их эксплуатации создается специальный комплекс программных средств. Обычно аппаратные и программные средства взаимосвязаны и объединяются в одну структуру.

Структура представляет собой совокупность элементов и их связей. В зависимости от контекста различают структуры технических, программных, аппаратно-программных и информационных средств.

Часть программных средств обеспечивает взаимодействие пользователей с компьютером и является своеобразным "посредником" между ними. Она получила название "операционная система" и является ядром программного обеспечения.

Под программным обеспечением понимают комплекс программных средств регулярного применения, создающий необходимый сервис для работы пользователей.

Программное обеспечение (ПО) отдельных компьютеров и вычислительных систем (ВС), созданных на их основе, может сильно различаться составом используемых программ, который определяется классом используемой вычислительной техники, режимами ее применения, содержанием вычислительных работ пользователей и т.п. Развитие ПО в значительной степени носит эволюционный и эмпирический характер, но можно выделить закономерности в его построении.

В общем случае процесс подготовки и решения задач предусматривает обязательное выполнение следующей последовательности этапов: формулировка проблемы и математическая постановка задачи; выбор метода и разработка алгоритма решения; программирование (запись алгоритма) с использованием некоторого алгоритмического языка; планирование и организация вычислительного процесса - порядка и последовательности использования ресурсов компьютеров и вычислительных систем (ВС); формирование "машинной программы", то есть программы, которую непосредственно будет выполнять компьютер; собственно решение задачи - выполнение вычислений по готовой программе.

По мере развития вычислительной техники автоматизация этих этапов идет снизу вверх. На пути развития электронной вычислительной техники обычно выделяют четыре поколения компьютеров, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ресурсам со стороны пользователей.

Смене поколений сопутствует изменение основных технико-эксплуатационных и технико-экономических показателей компьютеров и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь пользователей с компьютерами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на компьютеры в различных сферах их применения.

Возможности улучшения технико-эксплуатационных показателей компьютеров в значительной степени зависят от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития компьютеров каждое поколение в первую очередь характеризуется используемой элементной базой.

Основным активным элементом компьютеров первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры - это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы - ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройства ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально были разработаны электромеханические запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Компьютеры этого поколения имели значительные размеры, потребляли большую мощность. Быстродействие этих машин составляло от нескольких сотен до нескольких тысяч операций в секунду, емкость памяти - несколько тысяч машинных слов, надежность исчислялась несколькими часами работы.

В этих ЭВМ автоматизации подлежал этап выполнения вычислений, так как у них практически отсутствовало какое-либо программное обеспечение. Все этапы подготовки пользователь должен был готовить вручную самостоятельно, вплоть до получения машинных кодов программ. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. Поэтому в компьютерах следующих поколений появились сначала блоки программ, а затем целые программные системы, облегчающие процесс подготовки задач к решению.

На смену лампам пришли транзисторы в машинах второго поколения (начало 60-х годов). Применение постоянно совершенствуемых транзисторов позволило преобразовать окружающий человека мир (радио, телевидение, бытовая аппаратура, системы связи и т.п.). Компьютеры стали обладать большими быстродействием, емкостью оперативной памяти, надежностью. Все основные характеристики постоянно улучшались. Существенно были уменьшены размеры, масса и потребляемая мощность.

В компьютерах этого поколения появились методы и приемы программирования, высшей ступенью которых явилось появление систем автоматизации программирования, значительно облегчающих труд математиков-программистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению. Это привело к созданию библиотек стандартных программ, что позволило строить машинные программы блоками, используя накопленный и приобретенный программистами опыт.

Третье поколение компьютеров (в конце 60-х - начале 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический и функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось еще более улучшить технические и эксплуатационные характеристики машин. Вычислитель-ная техника стала иметь широкую номенклатуру устройств, которые позволили строить разнообразные системы обработки данных, ориентированные на различные применения.

Отличительной особенностью развития программных средств этого поколения является появление ярко выраженного программного обеспечения и развитие его ядра - операционных систем, отвечающих за организацию и управление вычислительным процессом. Стоимость программного обеспечения стала расти и в настоящее время намного опережает стоимость аппаратуры (рис.13.1). Наибольшая крутизна графика соответствует времени появления операционных систем - началу 80-х годов.

ОС планирует последовательность распределения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые применяются для вычислений: машинное время отдельных процессоров или компьютеров, входящих в систему; объемы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы, как общего, так и специального применения, и т.п. Интересно, что наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсеместно в компьютерах различных классов.


Рис. 13.1. Динамика изменения стоимости аппаратурных и программных средств

Здесь были существенно расширены возможности доступа к ним со стороны абонентов, находящихся на различных, в том числе и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с компьютером достигалось за счет развитой сети абонентских пунктов, связанных с ним информационными каналами связи, и соответствующего программного обеспечения.

Для компьютеров четвертого поколения (80-е годы) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, усложнению ее функций, повышению надежности и быстродействия, снижению стоимости. Это, в свою очередь, оказало существенное воздействие на логическую структуру компьютера и его программное обеспечение

В четвертом поколении с появлением микропроцессоров (1971 г.) возник новый класс вычислительных машин - микроЭВМ, на смену которым пришли персональные компьютеры (ПК, начало 80-х годов). В этом классе наряду с БИС стали использоваться сверхбольшие интегральные схемы (СБИС) 32-, а затем 64-разрядности.

Появление ПК - наиболее яркое событие в области вычислительной техники, до последнего времени самый динамично развивающийся сектор отрасли. С их внедрением решение задач информатизации общества было поставлено на реальную основу.

Применение ПК позволило сделать труд специалистов творческим, интересным, эффективным. Коренным образом были преобразованы сферы делопроизводства, торговли, складского учета и т.п. Компьютеры стали использоваться в различных системах управления технологическими процессами, производствами, фирмами, организациями и т.д.

Применение ПК позволило применять новые информационные технологии и создавать системы распределенной обработки данных. Высшей стадией систем распределенной обработки данных являются компьютерные (вычислительные) сети различных уровней - от локальных до глобальных.

В своем развитии компьютеры первых четырех поколений не выходили за рамки классической структуры, ориентированной на последовательные вычисления по программе. Но в начале нового тысячелетия (2005-2006 гг.) в связи с успехами микроэлектроники появились, а затем стали доминировать многоядерные микропроцессоры. Это позволило пе-рейти к параллельным вычислениям даже внутри отдельного компьютера. Де-факто возникли качественно новые по построению и своим возможностям компьютеры следующего поколения. Однако еще в 1980 году появился японский проект создания компьютеров пятого поколения, отличительной особенностью которых должен быть встроенный искусст-венный интеллект. Видимо, несовпадение признаков классификации не позволяет сейчас узаконить переход на компьютеры нового поколения.

В новых компьютерах продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества, параллелизм в работе). Следует указать на заметный рост уровня "интеллектуальности" систем, создаваемых на их основе. Подобные тенденции будут сохраняться и впредь. Так, по мнению исследователей [46], новые компьютеры наращивают и совершенствуют встроенный в них "искусственный интеллект", что позволяет пользователям обращаться к ним на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Аппаратная часть компьютеров постоянно усложняется, для них приходится создавать сложное многоэшелонное иерархическое программное обеспечение.

Основные характеристики и классификация компьютеров

Эффективное применение вычислительной техники предполагает, что каждый вид вычислений требует использования компьютера с определенными характеристиками.

Важнейшими из них служат быстродействие и производительность. Эти характеристики достаточно близки, но их не следует смешивать.

Быстродействие характеризуется числом определенного типа команд, выполняемых за одну секунду. Производительность - это объем работ (например, число стандартных программ), выполняемый в единицу времени.

Определение характеристик быстродействия и производительности представляет собой очень сложную инженерную и научную задачу, до настоящего времени не имеющую единых подходов и методов решения. Обычно вместо получения конкретных значений этих характеристик указывают результаты сравнения данных, полученных при испытаниях (тестированиях) различных образцов.

Другой важнейшей характеристикой компьютера является емкость запоминающих устройствЕмкость памяти измеряется количеством структурных единиц информации, которое может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен 8 битам). Следующими единицами измерения служат .

Обычно отдельно характеризуют емкости оперативной и внешней памяти. В настоящее время персональные компьютеры имеют емкость оперативной памяти, равную 512Мбайт, 1Гбайт и даже больше. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Емкость внешней памяти зависит от типа носителя. Так, практически исчезли из обращения дискеты как накопители и средства переноса и хранения данных. На смену им пришла флэш-память, емкость которой может быть от нескольких Гбайт до Тб. Пока сохраняют свое значение и традиционные накопители. Емкость дисков DVD достигает нескольких десятков Гбайтов, емкость компакт-диска (CD-ROM) - 640 Мб и выше, жестких дисков - сотни Гбайт и т.д. Емкость внешней памяти характеризует объем программного обеспечения и отдельных программных продуктов, которые могут устанавливаться. Например, для установкиоперационной среды Windows 7 в зависимости от версии требуется объем памяти жесткого диска 160Гб-1Тб и оперативной памяти 1-3Гб.

Надежность - это способность компьютера при определенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO - 2382/14-78).

Высокая надежность компьютера закладывается в процессе его производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (микропроцессоры и схемы памяти) резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом.

Точность - возможность различать почти равные значения (стандарт ISO 2382/2-76). Точность получения результатов обработки в основном определяется разрядностью компьютера, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Современные компьютеры, включая ПК, имеют возможность работы с 32- и даже с 64-разрядными машинными словами. С помощью языков программирования этот диапазон может быть увеличен в несколько раз, что позволяет достигать очень высокой точности.

Достоверность - свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратно-программными средствами контроля. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других компьютерах и сравнение результатов.

Усложнение схем компьютеров приводит к увеличению энергопотребления, что порождает целый ряд проблем. Поэтому для микропроцессоров введена характеристика, отражающая класс мощности (энерго-потребление, TDP - Thermal Design Power, тепловой пакет).

В настоящее время в мире произведены, работают и продолжают выпускаться миллионы вычислительных машин, относящиеся к различным поколениям, типам, классам и отличающиеся своими областями применения, техническими характеристиками и вычислительными возможностями.

Основные черты рынка современных компьютеров - разнообразие и динамизм. Практически каждые полтора десятилетия меняется поколение машин, каждые два года _ основные типы микропроцессоров, СБИС, определяющих характеристики новых вычислителей. Такие темпы сохраняются уже многие годы.

Рынок компьютеров постоянно имеет широкую градацию классов и моделей. Существует большое количество классификационных признаков, по которым все это множество разделяют на группы: по уровням специализации (универсальные и специализированные), по типоразмерам (настольные, портативные, карманные), по совместимости, по типам используемых микропроцессоров и количеству их ядер, по возможностям и назначению и др. [44]. Разделение компьютеров по поколениям, изложенное в п. 13.1, также является одним из видов классификации. Наиболее часто используют классификацию компьютеров по возможностям и назначению, а в последнее время - и по роли компьютеров в сетях.

По возможностям и назначению компьютеры подразделяют:

  • суперЭВМ, необходимые для решения крупномасштабных вычислительных задач, а также для обслуживания крупнейших информационных банков данных.

С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объемов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. СуперЭВМ по сравнению с другими типами машин позволяют точнее, быстрее и качественнее решать крупные задачи, обеспечивая необходимый приоритет в научных разработках, в том числе и в перспективной вычислительной технике.

Неудивительно, что мощные компьютеры являются особым достоянием любого государства. В Интернете отслеживается список пятисот самых мощных компьютеров мира (top500.org). Их разработка возведена в ранг государственной политики ведущих в экономическом отношении стран и является одним из важнейших направлений развития науки и техники. Список top500 сейчас возглавляют китайский компьютер Tianhe-1A и компьютер Cray XT5-HE Jaguar, с быстродействием соответственно 2,67 и 1,759 PFLOP (1 петафлоп= оп/с). В списке top500 имеются суперкомпьютеры, используемые в России. Их число возросло до одиннадцати штук, и Россия вышла на 7-ое место. Пятьдесят самых мощных компьютеров России отслеживаются на отечественном сайте http//supercomputers.ru (список top50);

  • большие ЭВМ, предназначенные для комплектования ведомственных, территориальных и региональных вычислительных центров (министерства, государственные ведомства и службы, крупные банки и т.д.). Примером подобных машин, а точнее, систем, могут служить компьютеры, предназначенные для обеспечения научных исследований, для построения рабочих станций для работы с графикой, UNIX-серверов, кластерных комплексов;

  • средние ЭВМ, широко используемые для управления сложными технологическими и производственными процессами (банки, страховые компании, торговые дома, издательства). Компьютеры этого типа могут применяться и для управления распределенной обработкой информации в качестве сетевых серверов;

  • персональные и профессиональные компьютеры (ПК), позволяющие удовлетворить индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня. К настоящему времени в развитых странах ниша ПК практически заполнилась;

  • мобильные и карманные компьютеры. Появление микропроцессоров способствовало разработке на их основе разнообразных устройств, используемых в различных областях жизнедеятельности человека: мобильная связь, бытовая техника, авто, игровые приставки, электронные записные книжки т.п. Аналитики предсказывают их прогрессирующее развитие на ближайшие 5-10 лет[45].

Появлению новых устройств способствуют следующие факторы:

  • экономические - новые устройства успешно конкурируют со старыми, традиционными. Например, сотовая связь уверенно отвоевывает клиентов обычной телефонной связи;

  • технологические - новые технологии обеспечивают качественно новые услуги (мобильный офис, телеконференции, предложение товаров от ближайших поставщиков и т.д.);

  • социальные - мобильные телефоны и досуг с использованием Интернета становятся стилем жизни;

  • бизнес-факторы - бизнес требует новых типов предложений под лозунгами "Услуги в любое время и в любом месте" и предоставления каждому "Своего офиса в кармане".

Рассмотрим упрощенную градацию подобных устройств.

Ноутбуки (Notebooks). Совершенствование микропроцессоров привело к созданию мощных, дружественных и малогабаритных компьютеров, вполне способных обеспечить создание мобильного офиса различного класса с ориентацией на электронную почту, передачу факсов, доступ в Интернет. Интересно, что кризис IT-рынка почти не затронул сектор ноутбуков. Их производство устойчиво и вытесняет обычные ПК. Конфигурации ноутбуков обеспечивают широкие возможности. Ценовой диапазон - от 0,5 до 3-4 тысяч долларов. Миниатюрные ноутбуки позволяют решать практически все задачи, присущие настольным ПК, они обладают теперь достаточной мощностью, расширяемостью и гибкостью. Но пока они еще достаточно дороги, и время их автономной работы огра-ничено несколькими часами.

Младшей разновидностью ноутбуков следует считать UMPC (ultra-mobile PC, ультрамобильный ПК). Если UMPC достаточно дороги, то проект OLPC (One Laptop per Child - "По ноутбуку каждому ребенку") имеет целью развитие инфраструктуры беднейших стран мира. Согласно ему небольшие компьютеры, стоимостью менее 100$, должны в массовом количестве поставляться в беднейшие страны Африки, Азии и Латинской Аме-рики. Пока не удается снизить стоимость компьютеров ниже 150-200$.

Конкурентом младших моделей ноутбуков следует считать нетбуки (netbooks), ориентированные на работу с сетевыми ресурсами Интернета. Они появились 2-3 года назад, но по числу продаж уже сравнялись с ноутбуками. Их производство набирает силу.

Карманные персональные компьютеры (КПК). Эти компьютеры ориентированы на выполнение в основном информационных функций. Они имеют очень широкую номенклатуру и градацию. Центральной функцией этих устройств являлось обеспечение мобильной связи. Еще 5-7 лет назад компьютеры этого типа рассматривали как конкурентов ноутбуков, однако реальность показывает, что они должны в ближайшем будущем уступить место коммуникаторам, смартфонам и специализированным устройствам (для навигации или специального применения). В настоящее время границу между различными типами этих устройств тяжело провести. Коммуникатор - это упрощенный КПК, дополненный функциональностью мобильного телефона. От мобильного телефона он отличается на-личием установленной развитой операционной системы. Обычно особенности управления телефонами изготовителями не разглашаются.

Широкое распространение получили устройства, называемые смартфонамиСмартфоны (умные телефоны), обрастая новыми функциями, способны заменить целый класс специализированных устройств и являются их киллерами.

В настоящее время почти 50% населения Земли имеет мобильные телефоны. Современный телефон стоимостью в 100$ оснащен цветным экраном, встроенным фотоаппаратом с разрешением 5-7 Мпикселов, ауди-оплеером. Некоторые из них способны вести видеосъемки, просматривать видеофильмы, иметь игротеки. Некоторые способны заменить библиотеку, компьютер с доступом в Интернет и E-mail.

Встраиваемые микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами. Успехи микроэлектроники позволяют создавать миниатюрные вычислительные устройства, вплоть до однокристальных ЭВМ. Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Они находят все большее применение в бытовой технике (теле-фонах, телевизорах, электронных часах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло-, водоснабжении, регулировке движения транспорта и т.д.), на производстве (робототехнике, управлении технологическими процессами). Постепенно они входят в нашу жизнь, все больше изменяя среду обитания человека.

Высокие скорости вычислений позволяют перерабатывать и выдавать все большее количество информации, что, в свою очередь, порождает потребности в создании связей между отдельно используемыми вычислителями. Поэтому все современные компьютеры в настоящее время имеют средства подключения к сетям связи и объединения в системы. С развитием сетевых технологий все больше начинает использоваться другой классификационный признак, отражающий их место и роль в сети. Согласно ему предыдущая классификация отражается на сетевой среде:

  • мощные машины, включаемые в состав сетевых вычислительных центров и систем управления гигантскими сетевыми хранилищами информации;

  • кластерные структуры;

  • серверы;

  • рабочие станции;

  • сетевые компьютеры.

Мощные машины и системы предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориентированными на обслуживание мощных потоков информации.

Кластерные структуры представляют собой многомашинные распределенные вычислительные системы, объединяющие под единым управлением несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечивая необходимую производительность, надежность, готовность и другие характеристики.

Серверы - это вычислительные машины и системы, управляющие определенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс-серверы, почтовые, коммуникационные, веб-серверы и др.

Термин "рабочая станция" отражает факт наличия в сетях абонентских пунктов, ориентированных на работу профессиональных пользователей с сетевыми ресурсами. Этот термин как бы отделяет их от ПК, которые обеспечивают работу основной массы непрофессиональных пользователей, работающих обычно в автономном режиме.

Сетевые компьютеры. На базе существующих стандартных микропроцессоров появляется новый класс устройств, получивший это название. Само название говорит о том, что они предназначаются для использования в компьютерных сетях. В зависимости от выполняемых функций и от контекста под этим термином понимают совершенно различные устройства, от простейшего компьютера-наладонника до специализированных сетевых устройств типа "маршрутизатор", "шлюз", "коммутатор" и т.п.

Число приведенных типов компьютеров в индустриально развитых странах образует некое подобие пирамиды с определенным соотношением численности каждого слоя. Распределение вычислительных возможностей по слоям должно быть сбалансировано.

Принципы построения компьютера

Основным принципом построения всех современных компьютеров является программное управление. В его основе лежит представление алгоритма решения любой задачи в виде программы вычислений.

Все вычисления, предписанные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов _ команд. Каждая команда содержит указания на конкретную выполняемую операцию, места нахождения (адреса) операндов и ряд служебных признаков. Операнды _ переменные, значения которых участвуют в операциях преобразования данных. Программы и обрабатываемые ими данные должны совместно храниться в памяти компьютера.

Для доступа к программам, командам и операндам используются их адреса. В качестве адресов выступают номера ячеек памяти компьютера, предназначенных для хранения объектов. Информация (командная и данные: числовая, текстовая, графическая и другая информация) кодируется двоичным кодом (цифрами 0 и 1). Поэтому различные типы информации, размещенные в памяти, практически неразличимы, идентификация их возможна лишь при выполнении программы, согласно ее логике, по контексту.

Выполнение каждой команды программы предполагает многократное обращение к памяти (выборка команд, выборка операндов, отсылка результатов и т.п.). В первых структурах ЭВМ использовалось централизованное управление, при котором одна и та же аппаратура выполняла и основные, и вспомогательные действия. Это было оправдано для первых дорогих машин, но не позволяло выполнять параллельные работы. Эволюция вычислительной техники потребовала децентрализации.

Децентрализация построения и управления вызвала к жизни такие элементы, которые являются общим стандартом структур современных компьютеров:

  • модульность построения;

  • магистральность;

  • иерархия управления.

Модульность построения предполагает выделение в структуре компьютера автономных, функционально, логически и конструктивно законченных устройств: процессор, модуль памяти, накопитель на магнитном диске, дисплей и т.п.

Модульная конструкция компьютера делает его открытой системой, способной к адаптации и совершенствованию. К нему можно подключать дополнительные устройства, улучшая его технические и экономические показатели. Появляется возможность наращивания вычислительной мощи, улучшения структуры путем замены отдельных устройств на более совершенные, изменения иуправления конфигурацией системы, приспособления ее к конкретным условиям применения в соответствии с требованиями пользователей.

В качестве основных средств подключения и объединения модулей в систему используются магистрали, или шины. Стандартная система сопряжения (интерфейс) обеспечивает возможность формирования требуемой конфигурации, гибкость структуры и адаптацию к изменяющимся условиям функционирования.

В современных вычислителях принцип децентрализации и параллельной работы распространен как на периферийные устройства, так и на сами компьютеры, их процессоры. Появились вычислительные системы, которые содержат несколько вычислителей, работающих согласованно и параллельно. Внутри самого компьютера произошло еще более резкое разделение функций между средствами обработки. Появились отдельные специализированные процессоры, например, сопроцессоры, выполняющие обработку чисел с плавающей точкой, матричные процессоры и др.

Модульность структуры потребовала стандартизации и унификации оборудования, номенклатуры технических и программных средств, средств сопряжения - интерфейсов, конструктивных решений, унификации типовых элементов замены, элементной базы и нормативно-технической документации. Все это способствовало улучшению технических и эксплуатационных характеристик компьютеров, росту технологичности их производства.

Децентрализация управления предполагает иерархическую организацию структуры компьютера. Главный или центральный модуль системы определяет последовательность работ подчиненных модулей и их инициализацию, после чего они продолжают работу по собственным программам управления. Результаты выполнения требуемых операций представляются ими "вверх по иерархии" для правильной координации всех работ. Подключаемые модули могут, в свою очередь, использовать специальные шины, или магистрали, для обмена управляющими сигналами, адресами и данными.

Иерархический принцип построения и управления характерен не только для структуры компьютера в целом, но и для отдельных его подсистем. Например, по этому же принципу строится система памяти.

Децентрализация управления и структуры компьютера позволила перейти к более сложным многопрограммным (мультипрограммным) режимам. При этом в компьютере одновременно могут обрабатываться несколько программ пользователей.

Структурные схемы и взаимодействие устройств компьютера

Классическая схема компьютера, отвечающая программному принципу управления, логично вытекает из последовательного характера преобразований, выполняемых человеком по некоторому алгоритму (программе). Обобщенная структурная схема ЭВМ первых поколений представлена на рис.13.2.

В любом компьютере имеются устройства ввода информации (УВв), с помощью которых пользователи вводят программы решаемых задач и данные. Введенная информация сначала полностью или частично запоминается в оперативном запоминающем устройстве(ОЗУ), а затем переносится во внешнее запоминающее устройство (ВЗУ), предназначенное для длительного хранения информации, где преобразуется в специальный информационный объект - файл.


Рис. 13.2. Структурная схема первых компьютеров

При использовании файла в вычислительном процессе его содержимое переносится в ОЗУ. Затем программная информация команда за командой считывается в устройство управления.

Устройство управления (УУ) предназначается для автоматического выполнения программ путем принудительной координации всех остальных устройств. Цепи сигналов управления показаны на рис.13.2 штриховыми линиями. Вызываемые из ОЗУ командыдешифрируются устройством управления: определяют код операции, которую необходимо выполнить следующей, и адреса операндов, принимающих участие в данной операции.

Арифметико-логическое устройство (АЛУ) выполняет арифметические и логические операции над данными. Основной частью АЛУ является операционный автомат, в состав которого входят сумматоры, счетчики, регистры, логические преобразователи и др. Он каждый раз перестраивается на выполнение очередной операции. Результаты выполнения отдельных операций сохраняются для последующего использования на одном из регистров АЛУ или записываются в память. Отдельные признаки результатов r ( и др.) устройство управления использует для изменения порядка выполнения команд программы. Результаты, полученные после выполнения всей программы вычислений, передаются на устройство вывода информации (УВыв). В качестве УВыв могут использоваться экран дисплея, принтер, графопостроитель и др.

Классическая структура компьютера представляла собой "удивительно изящное инженерное решение", хорошо отвечающее тогдашнему уровню развития промышленных технологий. Она стала фактическим стандартом (de facto), которому стали следовать производители вычислительной техники.

В персональных компьютерах, относящихся к компьютерам четвертого поколения, произошло дальнейшее изменение структуры (рис.13.3). Соединение всех устройств в единую машину обеспечивается с помощью общей шины, представляющей собой линии передачи данных, адресов, сигналов управления и питания. Единая система аппаратурных соединений значительно упростила структуру, сделав ее децентрализованной. Все передачи данных по шине осуществляются под управлением сервисных программ.


Рис. 13.3. Структура ПК

Ядро ПК образуют процессор, основная память (ОП), состоящая из оперативной памяти и постоянного запоминающего устройства(ПЗУ), и видеопамять. ПЗУ предназначается для записи и постоянного хранения наиболее часто используемых программ управления.

Подключение всех внешних устройств (ВнУ), дисплея, клавиатуры, внешних ЗУ и др. обеспечивается через соответствующиеадаптеры - согласователи скоростей работы сопрягаемых устройств, или контроллеры - специальные устройства управления периферийной аппаратурой. Контроллеры в ПК играют роль каналов ввода-вывода. В качестве особых устройств следует выделить таймер - устройство измерения времени, и контроллер прямого доступа к памяти (КПД) - устройство, обеспечивающее доступ к ОП, минуя процессор.

Организацию согласованной работы шин и устройств выполняют микросхемы системной логики, называемые чипсетом (Chipset). Большинство наборов микросхем системной логики имеют ярко выраженную иерархическую структуру построения, отвечающую уровням высокоскоростных и ввода-вывода данных. Уровень высокоскоростных устройств образуют процессоры, видеопамять, оперативная память; уровень низко-скоростных устройств образуют любые внешние устройства.

Компьютерные системы

Полувековая история развития вычислительной техники была связана с совершенствованием классической структуры компьютера, имеющей следующие отличительные признаки:

  • ядро компьютера - процессор - единственный вычислитель в структуре, дополненный каналами обмена информацией и памятью;

  • линейная организация ячеек всех видов памяти фиксированного размера;

  • одноуровневая адресация ячеек памяти, стирающая различия между всеми типами информации;

  • внутренний машинный язык низкого уровня, при котором команды содержат элементарные операции преобразования простых операндов;

  • последовательное централизованное управление вычислениями;

  • достаточно примитивные возможности устройства ввода-вывода.

Классическая структура компьютера уже сослужила добрую службу человечеству. В ходе эволюции она была дополнена целым рядом частных доработок, позволяющих ликвидировать наиболее "узкие места" и обеспечить максимальную производительность в рамках достигнутых технологий. Однако, несмотря на все успехи, классическая структура уже не обеспечивает возможностей дальнейшего наращивания производительности. Теория и практика построения компьютеров подошли к рубежам микроэлектроники, за которыми стоят множество практически неразре-шимых проблем в областях системотехники, дальнейшего наращивания частоты работы микросхем, программирования, компиляции и т.д.

Дальнейшее поступательное развитие вычислительной техники напрямую связано с переходом к параллельным вычислениям, с идеями построения многопроцессорных систем и сетей, объединяющих большое количество отдельных процессоров и (или) ЭВМ. Здесь появляются огромные возможности совершенствования средств вычислительной техники. Но следует отметить, что при несомненных практических достижениях в области параллельных вычислений до настоящего времени отсутствует их единая теоретическая база.

С появлением в начале нового тысячелетия многоядерных микропроцессоров эра компьютеров классической структуры и связанных с ними последовательных вычислений заканчивается. На смену идут новые параллельные структуры с новыми принципами их построения. Они становятся экономически более выгодными. Будущее вычислительной техники - именно за этими системами.

Под вычислительной (компьютерной) системой (ВС) понимают совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и программного обеспечения, предназначенную для сбора, хранения, обработки ираспределения информации. Отличительной особенностью ВС по отношению к ЭВМ является наличие в них нескольких вычислителей, реализующих параллельную обработку. Создание ВС преследует следующие основные цели: повышение производительности системы за счет ускорения процессов обработки данных, повышение надежности и достоверности вычислений, предоставление пользователям дополнительных сервисных услуг и т.д.

Основные принципы построения, закладываемые при создании ВС:

  • возможность работы в разных режимах;

  • модульность структуры технических и программных средств, которая позволяет совершенствовать и модернизировать вычислительные системы без коренных их переделок;

  • унификация и стандартизация технических и программных решений;

  • иерархия в организации управления процессами;

  • способность систем к адаптации, самонастройке и самоорганизации;

  • обеспечение необходимым сервисом пользователей при выполнении вычислений.

Существует большое количество признаков, по которым классифицируют вычислительные системы: по целевому назначению и выполняемым функциям, по типам и числу ЭВМ или процессоров, по архитектуре системы, режимам работы, методам управления элементами системы, степени разобщенности элементов вычислительной системы и др. Однако основными из них являются признаки структурной и функциональной организации вычислительной системы.

Большое разнообразие структур ВС затрудняет их изучение. Поэтому их классифицируют с учетом их обобщенных характеристик. С этой целью вводится понятие "архитектура системы".

Архитектура ВС - совокупность характеристик и параметров, определяющих функционально-логическую и структурную организацию системы и затрагивающих в основном уровень параллельно работающих вычислителей. Понятие архитектуры охватывает общие принципы построения и функционирования, наиболее существенные для пользователей, которых больше интересуют возможности систем, а не детали их технического исполнения. Поскольку ВС появились как системы параллельной обработки, рассмотрим классификацию архитектур именно c этой точки зрения.

Классификация архитектур была предложена М. Флинном (M. Flynn) в начале 60-хгг. В ее основу заложено два возможных вида параллелизма: независимость потоков заданий (команд), существующих в системе, и независимость (несвязанность) данных, обрабатываемых в каждом потоке. Классификация до настоящего времени еще не потеряла своего значения. Однако подчеркнем, что, как и любая классификация, она носит временный и условный характер. Своим долголетием она обязана тому, что оказалась справедливой для ВС, в которых вычислительные модули построены на принципах классической структуры ЭВМ. С появлением систем, ориентированных на потоки данных и использование ассоциативной обработки, эта классификация может быть некорректной.

Согласно данной классификации существует четыре основных архитектуры ВС, представленных на рис.13.4:

  • одиночный поток команд - одиночный поток данных (ОКОД), в английском варианте Single Instruction Single Data (SISD) - одиночный поток инструкций - одиночный поток данных (рис.13.4a);

  • одиночный поток команд - множественный поток данных (ОКМД), или Single Instruction Multiple Data (SIMD) - одиночный поток инструкций - одиночный поток данных (рис.13.4б);

  • множественный поток команд - одиночный поток данных (МКОД), или Multiple Instruction Single Data (MISD) - множественный поток инструкций - одиночный поток данных (рис.13.4в);

  • множественный поток команд - множественный поток данных (МКМД), или Multiple Instruction Multiple Data (MIMD) - множественный поток инструкций - множественный поток данных (рис.13.4г).

Коротко рассмотрим отличительные особенности каждой из архитектур.

Архитектура ОКОД охватывает все однопроцессорные и одномашинные варианты систем, то есть варианты с одним вычислителем. Все ЭВМ классической структуры попадают в этот класс. Здесь параллелизм вычислений обеспечивается путем совмещения выполнения операций отдельными блоками АЛУ, а также параллельной работой устройств ввода-вывода информации и процессора. Закономерности организации вы-числительного процесса в этих структурах достаточно хорошо изучены.

Архитектура ОКМД предполагает создание структур векторной или матричной обработки. Системы этого типа обычно строятся как однородные, т.е. процессорные элементы, входящие в систему, идентичны и все они управляются одной и той же последовательностью команд. Однако каждый процессор обрабатывает свой поток данных. Под эту схему хорошо подходят задачи обработки матриц или векторов (массивов), задачи решения систем линейных и нелинейных, алгебраических и дифференциальных уравнений, задачи теории поля и др. В структурах данной архитектуры желательно обеспечивать соединения между процессорами, соответствующие реализуемым математическим зависимостям. Как правило, эти связи напоминают матрицу, в которой каждыйпроцессорный элемент связан с соседними.


Рис. 13.4. Архитектуры вычислительных систем: а) ОКОД (SISD) - архитектура; б) ОКМД (SIMD) - архитектура; в) МКОД (MISD) - архитектура; г) МКМД (MIMD) - архитектура

Эту схему использовали и используют все суперЭВМ без исключения, начиная с таких известных систем, как Cyber-205 и Grayразличных модификаций. Узким местом подобных систем является необходимость изменения коммутации между процессорами, когда связь между ними отличается от матричной. Кроме того, задачи, допускающие широкий матричный параллелизм, составляют достаточно узкий класс задач. Структуры ВС этого типа по существу являются структурами специализированных суперЭВМ.

Архитектура МКОД предполагает построение своеобразного процессорного конвейера, в котором результаты обработки передаются от одного процессора к другому по цепочке. Выгоды такого вида обработки понятны. Прототипом таких вычислений может служить схема любого производственного конвейера. В современных ЭВМ по этому принципу реализована схема совмещения операций, в которой различные функциональные блоки работают параллельно, и каждый из них делает свою часть в общем цикле обработки команды.

В ВС этого типа конвейер должны образовывать группы процессоров. Однако при переходе на системный уровень очень трудно выявить подобный регулярный характер в универсальных вычислениях. Кроме того, на практике нельзя обеспечить и "большую длину" такого конвейера, при которой достигается наивысший эффект. Вместе с тем конвейерная схема нашла применение в так называемых скалярных процессорах суперЭВМ - они применяются как специальные процессоры для поддержки векторной обработки.

Архитектура МКМД предполагает, что все процессоры системы работают с различными программами и с индивидуальным набором данных. В простейшем случае они могут быть автономны и независимы. Такая схема использования ВС часто применяется во многих крупных вычислительных центрах для увеличения пропускной способности центра.

Наибольший интерес представляет организация согласованной работы процессоров системы, когда каждый элемент делает часть общей программы. Общая теоретическая база такого вида работ пока только создается. Но можно привести примеры большой эффективности этой модели вычислений. Подобные системы могут быть многомашинными и многопроцессорными. Переход на многоядерные микропроцессоры позволяет создавать мощные центры параллельной обработки, имеющие в своем составе тысячи процессоров. Проектировщики компьютерных систем сосредотачивают свои усилия на разработках разноплановых структур ВС (сосредоточенных и распределенных систем) именно в архитектуре МКМД.

Контрольные вопросы

  1. Каково содержание понятия "структура компьютера"?

  2. По каким техническим характеристикам осуществляется оценка и выбор компьютера?

  3. Что представляет собой класс карманных персональных компьютеров?

  4. Каковы основные тенденции развития компьютеров?

  5. Объясните суть принципа иерархии построения ЭВМ.

  6. Перечислите отличительные особенности классической структуры ЭВМ.

  7. Каковы отличительные особенности структуры ПК?

  8. Объясните многообразие шин, используемых в структуре ПК.

  9. Каковы основные предпосылки появления и развития компьютерных систем?

  10. Какие принципы положены в основу классификации архитектур компьютерных систем?




Получите в подарок сайт учителя

Предмет: Информатика

Категория: Прочее

Целевая аудитория: 11 класс.
Урок соответствует ФГОС

Скачать
Технические средства информационных технологий

Автор: Каташова Айса Валериевна

Дата: 29.03.2015

Номер свидетельства: 193518

Похожие файлы

object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(210) "Актуальность использования информационных технологий  в системе  технического и  профессионального образования. "
    ["seo_title"] => string(122) "aktual-nost-ispol-zovaniia-informatsionnykh-tiekhnologhii-v-sistiemie-tiekhnichieskogho-i-profiessional-nogho-obrazovaniia"
    ["file_id"] => string(6) "196167"
    ["category_seo"] => string(7) "prochee"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1428000814"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(100) "Программа научно-технической направленности «КомпАс»"
    ["seo_title"] => string(57) "proghramma_nauchno_tiekhnichieskoi_napravliennosti_kompas"
    ["file_id"] => string(6) "394275"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1487673565"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(144) "Научная статья на тему: "Применение информационных технологий на уроках химии""
    ["seo_title"] => string(80) "nauchnaia_stat_ia_na_tiemu_primienieniie_informatsionnykh_tiekhnologhii_na_uro_2"
    ["file_id"] => string(6) "449801"
    ["category_seo"] => string(6) "himiya"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1515911145"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(106) "Использование информационных технологий на уроках химии "
    ["seo_title"] => string(63) "ispol-zovaniie-informatsionnykh-tiekhnologhii-na-urokakh-khimii"
    ["file_id"] => string(6) "119382"
    ["category_seo"] => string(6) "himiya"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1413394310"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(113) "Информационные технологии в образовательном процессе статья"
    ["seo_title"] => string(69) "informatsionnyie_tiekhnologhii_v_obrazovatiel_nom_protsiessie_stat_ia"
    ["file_id"] => string(6) "395548"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1488031511"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства