Просмотр содержимого документа
«Контрольные работы по алгебре и началам математического анализа 10 класс»
Контрольные работы по алгебре и началам математического анализа 10 класс.
КР-1. Повторение и расширение сведений о функции.
Найдите наибольшее и наименьшее значения функции: 1) у = 7х – 2 на промежутке [–2; 3]; 2) у = х2 – 2х – 3 на промежутке [–1; 2].
Исследуйте на чётность функцию: 1) у = x4 – 2х2 + 3; 2) у = х5 – 3х3 + 2; 3) у = 2x/(5 – x6); 4) у = (x + 2)/(x2 + 2x).
Найдите функцию, обратную к функции у = 9 – 3х.
Постройте график функции у = √[4 + 2х].
Являются ли равносильными уравнения: 1) х2 = 49 и х2 + 1/(x + 8) = 1/(x + 8) + 49; 2) х2 = 49 и х2 + 1/(x+7) = 1/(x+7) + 49 ?
На рисунке 31 изображена часть графика чётной функции у = f(x), определённой на промежутке [–6; 6]. Достройте график этой функции и найдите её наибольшее и наименьшее значения на промежутке [–6; 6].
2. Найдите уравнение касательной к графику функции f(x) = х4 – 2х в точке с абсциссой х0 = –1.
3. Найдите производную данной функции и вычислите её значение в данной точке х0: 1) f(x) = √[3х + 1], х0 = 5; 2) f(х) = sin5 х, х0 = π/3.
4. Материальная точка движется по координатной прямой по закону s(t) = –t3/3 + 2,5t2 + 24t + 7 (время t измеряется в секундах, перемещение s – в метрах). Найдите скорость движения точки в момент времени t0 = 3.
5. Найдите уравнение касательной к графику функции f(x) = х2 + 3х – 8, если эта касательная параллельна прямой у = 9х – 1.
КР-8. Применение производной.
1. Докажите, что функция f(х) = –х3/3 + х2/2 – 2х + 12 убывает на множестве действительных чисел.
2. Найдите промежутки возрастания и убывания и точки экстремума функции: 1) f(x) = х3 – х2 – 5х – 3; 2) f(х) = х√[9 – х]; 3) f(x) = √3х – 2 cos x.
3. Найдите наибольшее и наименьшее значения функции f(x) = (x2 + 7x)/(х – 9) на промежутке [–4; 1].
4. Исследуйте функцию f(x) = х3 – 3х2 и постройте её график.
КР-9. Обобщение и систематизация знаний учащихся.
1. Сравните 3√2[√3] и 6√5[√6].
2. Найдите область определения функции f(x) = √[(9 – x2)/(x2 – 6x + 8)].
3. Решите уравнение: 1) √[2x – 1] = х – 2; 2) 8 sin (x/3) + cos (x/3) = 0; 3) cos 6x – 5 cos 3x + 4 = 0.
4. Докажите тождество (sin 8а / sin 5a – cos 8a / cos 5a) • ((sin 6а + sin 14а) / sin За) = 4 cos 4а.
5. Решите неравенство √[1 – 5х]
6. Исследуйте функцию f(x) = х3 – 6х2 и постройте её график.
Контрольные работы по геометрии 10 класс.
КР-1. Аксиомы стереометрии и следствия из них. Начальные представления о многогранниках.
На рисунке 97 изображён куб ABCDA1B1C1D1. Укажите прямую пересечения плоскостей АВ1С1 и ABB1.
Даны точки А, В и С такие, что АВ = 2 см, ВС = 5 см, АС = 3 см. Сколько существует плоскостей, содержащих точки А, В и С? Ответ обоснуйте.
Точки А, В и С не лежат на одной прямой. На прямой АВ отметили точку D, на прямой ВС — точку В, а на прямой DE — точку М. Докажите, что точки А, С и М лежат в одной плоскости.
Точки М и N принадлежат соответственно граням SBC и SCD пирамиды SABCD (рис. 98). Постройте точку пересечения прямой MN с плоскостью SBD.
Точки М и К принадлежат соответственно рёбрам SB и SC тетраэдра SABC, а точка N — грани АВС (рис. 99), причём прямые МК и ВС не параллельны. Постройте сечение тетраэдра плоскостью MNK.
КР-2. Параллельность в пространстве.
1. Даны параллельные плоскости α и β. Через точки А и В плоскости проведены параллельные прямые, пересекающие плоскость β в точках А1 и В1. Найдите А1В1, если АВ=5см.
2. Верно, что плоскости параллельны, если прямая, лежащая в одной плоскости, параллельна другой плоскости.
3. Две плоскости параллельны между собой. Из точки М, не лежащей ни в одной из плоскостей, ни между плоскостями, проведены две прямые, пересекающие эти плоскости соответственно в точках А1 и А2, В1 и В2. Известно, что МА1=4см, В1В2=9см, А1А2=МВ1. Найдите МА2 и МВ2.
4. Построить сечение,
проходящее через линии и точки,
выделенные на чертеже (рис. 1).
5. Ребро куба АВСДА1В1С1Д1 равно 2см. Найдите расстояние между прямыми АВ и В1Д.
КР-3. Перпендикулярность прямой и плоскости.
На рисунке 103 изображён ромб ABCD. Через точку О пересечения его диагоналей проведена прямая МО, перпендикулярная прямой АС. Докажите, что прямая АС перпендикулярна плоскости BMD.
Через вершину А прямоугольного равнобедренного треугольника АВС с гипотенузой АВ, равной 8 см, проведена прямая AD, перпендикулярная плоскости треугольника. Расстояние от точки D до плоскости АВС равно 2 см. Найдите расстояние от точки D до прямой ВС.
Точка F равноудалена от всех вершин прямоугольника со сторонами 12 см и 16 см и находится на расстоянии 2√11 см от плоскости прямоугольника. Найдите расстояние от точки F до вершин прямоугольника.
Через вершину В квадрата ABCD к его плоскости проведён перпендикуляр МВ. Точка М удалена от стороны AD на 9√2 см. Найдите расстояние от точки М до плоскости квадрата, если его диагональ равна 14 см.
Точка S равноудалена от сторон трапеции ABCD (ВС || AD) и находится на расстоянии √7 см от её плоскости. Найдите расстояние от точки D до сторон трапеции, если CD = 12 см, ∠ADC = 45°.
КР-4. Угол между прямой и плоскостью. Угол между плоскостями. Перпендикулярные плоскости.
Из точки А проведены к плоскости α наклонные АЕ и AF, образующие с ней углы 30° и 60° соответственно. Найдите проекцию наклонной AF на плоскость α, если проекция наклонной АЕ на эту плоскость равна 6 см.
Точка В принадлежит одной из граней двугранного угла и удалена от другой грани на 4√3 см. Найдите расстояние от точки В до ребра двугранного угла, если величина этого угла равна 60°.
Угол между плоскостями треугольников АВМ и АВК равен 30°, AM = ВМ = 20 см, АК = ВК = 2√67 см, АВ = 32 см. Найдите отрезок МК.
Плоскости α и β перпендикулярны. Прямая а — линия их пересечения. В плоскости α выбрали точку А, а в плоскости β — точку В такие, что расстояния от них до прямой а равны 4 см и 5 см соответственно. Найдите расстояние между точками А и В, если расстояние между их проекциями на прямую а равно 2√2 см.
Через вершину В квадрата ABCD провели перпендикуляр МВ к плоскости квадрата. Угол между прямой MD и плоскостью квадрата равен 60°. Найдите угол между плоскостями АВС и MCD.
КР-5. Многогранники.
Основанием прямой призмы является прямоугольный треугольник, катеты которого равны 6 см и 8 см. Найдите площадь полной поверхности призмы, если её боковое ребро равно 5 см.
Сторона основания правильной треугольной пирамиды равна 4√3 см, а высота пирамиды — 2√6 см. Найдите: 1) боковое ребро пирамиды; 2) площадь боковой поверхности пирамиды.
Найдите площадь боковой поверхности правильной четырёхугольной усечённой пирамиды, стороны оснований которой равны 6 см и 22 см, а боковое ребро — 4√5 см.
Основанием пирамиды является равнобедренный треугольник с боковой стороной а и углом α при вершине. Двугранные углы пирамиды при рёбрах основания равны β. Найдите: 1) площадь боковой поверхности пирамиды; 2) высоту пирамиды.
В наклонной треугольной призме, боковое ребро которой равно 18 см, проведено сечение, перпендикулярное боковому ребру. Это сечение является треугольником со сторонами 3 см и 8 см и углом 60° между ними. Найдите площадь боковой поверхности призмы.
КР-6. Обобщение и систематизация знаний учащихся.
Сторона правильного треугольника равна 6√3 см. Точка М равноудалена от всех прямых, содержащих его стороны. Проекцией точки М на плоскость треугольника является точка, принадлежащая этому треугольнику. Найдите расстояние от точки М до сторон треугольника, если расстояние от точки М до плоскости треугольника равно 6√2 см.
Точка А находится на расстоянии 3 см от плоскости α. Наклонные АЕ и AF образуют с плоскостью α углы 60° и 30° соответственно. Найдите расстояние между точками Е и F, если угол между проекциями наклонных на плоскость α равен 120°.
Через вершину В треугольника АВС, в котором АВ = ВС = 6 см, АС = 8 см, проведён перпендикуляр МВ к плоскости треугольника. Найдите угол между плоскостями АВС и АМС, если МВ = 2√15 см.
Основанием прямого параллелепипеда является ромб с острым углом α. Большая диагональ параллелепипеда равна d и образует с плоскостью основания угол β. Найдите площадь боковой поверхности параллелепипеда.
Боковые грани DAB и DAC пирамиды DABC перпендикулярны плоскости основания. Найдите площадь боковой поверхности пирамиды, если ∠ACB = 90°, АС = 8 см, ВС = 6 см, а расстояние от точки D до прямой ВС равно 17 см.