Рабочая программа учебного предмета «Алгебра-9» обеспечивает достижение хороших результатов освоения образовательной программы основного общего образования.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Рабочая программа по алгебре для 9 класса»
Рабочая программа по алгебре для 9 класса
Мордкович А.Г., Семенов П.В. Алгебра. Учебник для 9 класса общеобразовательных учреждений в двух частях. М., «Мнемозина», 2018.
Содержание:
стр
I. Планируемые результаты освоения учебного предмета «Алгебра-9»
3-8
II. Содержание учебного предмета
9-12
III. Тематическое планирование
13-14
I. Планируемые результаты освоения учебного предмета «Алгебра-9»
Рабочая программа учебного предмета «Алгебра-9» обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:
Личностные результаты:
Формирование ответственного отношения к учению, готовности к саморазвитию и самообразованию на основе мотивации к обучению, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов, выбору профильного математического образования.
Формирование целостного мировоззрения, соответствующего современному уровню развития науки.
Формирование коммуникативной компетентности в учебно-исследовательской, творческой и других видах деятельности.
Умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры.
Креативность мышления, инициативу, находчивость, активность при решении задач.
Умение контролировать процесс и результат математической деятельности.
Метапредметные результаты:
Формирование универсальных учебных действий (познавательных, регулятивных, коммуникативных), обеспечивающих овладение ключевыми компетенциями, составляющими основу умения учиться.
Умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.
Умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы.
Умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения.
Осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора, оснований и критериев, установления родовидовых связей.
Умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы
Умение ориентироваться в учебнике (на развороте, в оглавлении, в условных обозначениях).
Умение определять и формировать цель деятельности на уроке с помощью учителя.
Умение проговаривать последовательность действий на уроке.
Умение учиться работать по предложенному учителем плану.
Умение делать выводы в результате совместной работы класса и учителя.
Умение преобразовывать информацию из одной формы в другую.
Умение подробно пересказывать небольшие тексты.
Умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач.
Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
Умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение. оформлять свои мысли в устной и письменной форме, слушать и понимать речь других;
Формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ - компетентности).
Первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов.
Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.
Умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации.
Умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации.
Умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки.
Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.
Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.
Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
Предметные результаты:
1) Умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую технологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
2) Владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятный характер;
4) Умение пользоваться математическими формулами при изучении числовых последовательностей, самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
5) решать текстовые задачи арифметическим способом, с помощью составления и решения уравнений, систем уравнений и неравенств; 6) Умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
7) Овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
8) Овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;
9) Умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Предметные результаты по итогам изучения каждой главы учебника
Тема
Учащиеся научатся
Учащиеся получат возможность научиться
При изучении темы «Рациональные неравенства и их системы»
Учащийся научится
понимать и применять терминологию и символику, связанные с отношением неравенства, свойств числовых неравенств;
решать линейные неравенства с одной переменной и их системы;
решать квадратные неравенства с опорой на графические представления;
применять аппарат неравенств для решения задач из различных разделов курса.
Учащийся получит возможность научиться
разнообразным приёмам решения неравенств и систем неравенств;
использовать метод интервалов для решения целых и дробно-рациональных неравенств;
решать линейные уравнения и неравенства с параметрами;
уверенно применять неравенства и их системы для решения разнообразных математических задач и задач из смежных предметов, практики;
работать в группе — устанавливать рабочие отношения, эффективно сотрудничать и способствовать продуктивной кооперации;
применять графические представления для исследования неравенств, систем неравенств содержащих буквенные коэффициенты.
В повседневной жизни и при изучении других предметов:
выполнять оценку правдоподобия результатов, получаемых при решении систем линейных уравнений и неравенств при решении задач других учебных предметов;
выбирать соответствующие неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
уметь интерпретировать полученный при решении неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.
При изучении темы
«Системы уравнений»
Учащийся научится:
- решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений, исследование и решение систем уравнений с двумя переменными.
Учащийся получит возможность научиться:
овладеть специальными приёмами решения уравнений и систем уравнений;
решать несложные системы линейных уравнений с параметрами;
уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
В повседневной жизни и при изучении других предметов:
составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений при решении задач других учебных предметов;
выбирать соответствующие уравнения, или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
уметь интерпретировать полученный при решении уравнения или системы результат в контексте заданной реальной ситуации или прикладной задачи.
При изучении темы «Числовые функции»
Учащийся научится:
понимать и использовать функциональные понятия и язык (термины, символические обозначения);
строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
В повседневной жизни и при изучении других предметов:
• использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
Учащийся получит возможность научиться:
проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;
исследовать функцию по ее графику;
находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;
на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми » точками и т.п.);
- использовать функциональные представления и свойства функций для решения математических задач из различных разделов;
В повседневной жизни и при изучении других предметов:
• иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
• использовать свойства и график квадратичной функции при решении задач из других учебных предметов.
При изучении темы
«Прогрессии»
Учащийся научится:
понимать и использовать язык последовательностей (термины, символические обозначения);
- применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
Учащийся получит возможность научиться:
- решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.
При изучении темы
«Элементы комбинаторики и теории вероятностей»
Учащийся научится:
использовать простейшие способы представления и анализа статистических данных;
- находить относительную частоту и вероятность случайного события;
- решать комбинаторные задачи на нахождение числа объектов или комбинаций распознавать рациональные и иррациональные числа;
представлять данные в виде таблиц, диаграмм, графиков;
читать информацию, представленную в виде таблицы, диаграммы, графика;
определять основные статистические характеристики числовых наборов;
оценивать вероятность события в простейших случаях;
иметь представление о роли закона больших чисел в массовых явлениях.
В повседневной жизни и при изучении других предметов:
оценивать количество возможных вариантов методом перебора;
иметь представление о роли практически достоверных и маловероятных событий;
сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
оценивать вероятность реальных событий и явлений в несложных ситуациях.
Учащийся получит возможность научиться:
возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;
решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
извлекать информацию, представленную в таблицах, на диаграммах, графиках;
составлять таблицы, строить диаграммы и графики на основе данных;
оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
применять правило произведения при решении комбинаторных задач;
В повседневной жизни и при изучении других предметов:
• извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
• определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
• оценивать вероятность реальных событий и явлений.
Содержание учебного предмета «Алгебра- 9»
Рациональные неравенства и их системы. (17 ч.)
Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств.
Системы уравнений. (16 ч.)
Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений.
Числовые функции. (27)
Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции, непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем.
Прогрессии. (16 ч.)
Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии, характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.
Элементы комбинаторики, статистики и теории вероятностей. (13 ч.)
Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, её кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности.
Обобщающее повторение. (10 часов).
Выражения и их преобразования. Буквенные выражения. Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений. Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена. Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями. Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.
Уравнения. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Решение уравнений высших степеней; методы замены переменной, разложения на множители. Уравнение с двумя переменными; решение уравнения с двумя переменными.
Системы уравнений. Решение системы уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Решение нелинейных систем. Решения уравнений в целых числах.
Неравенства. Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Решение дробно-линейных неравенств. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.
Функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций. Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем. Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост. Числовые функции, описывающие эти процессы. Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.
Координаты и графики. Изображение чисел очками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой. Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке. Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.
Арифметическая и геометрическая прогрессии. Понятие числовой последовательности. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Сложные проценты.
Решение текстовых задач алгебраическим способом. Переход от словесной формулировки соотношений между величинами к алгебраической.
Элементы логики, комбинаторики, статистики и теории вероятностей.
Определения, доказательства, аксиомы и теоремы; следствия. Контрпример. Доказательство от противного. Прямая и обратная теоремы. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.
установление доверительных отношений между учителем и его учениками, способствующих позитивному восприятию учащимися требований и просьб учителя, привлечению их внимания к обсуждаемой на уроке информации, активизации их познавательной деятельности
побуждение школьников соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (учителями) и сверстниками (школьниками), принципы учебной дисциплины и самоорганизации;
привлечение внимания школьников к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией – инициирование ее обсуждения, высказывания учащимися своего мнения по ее поводу, выработки своего к ней отношения;
использование воспитательных возможностей содержания учебного предмета через демонстрацию детям примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе;
применение на уроке интерактивных форм работы учащихся: интеллектуальных игр, стимулирующих познавательную мотивацию школьников; которые дают учащимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат школьников командной работе и взаимодействию с другими детьми;
включение в урок игровых процедур, которые помогают поддержать мотивацию детей к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока;
организация шефства мотивированных и эрудированных учащихся над их одноклассниками, дающего школьникам социально значимый опыт сотрудничества и взаимной помощи;
инициирование и поддержка исследовательской деятельности школьников в рамках реализации ими индивидуальных и групповых исследовательских проектов, что даст школьникам возможность приобрести навык самостоятельного решения теоретической проблемы, навык генерирования и оформления собственных идей, навык уважительного отношения к чужим идеям, оформленным в работах других исследователей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения.
использование ИКТ и дистанционных образовательных технологий обучения, обеспечивающих деятельность обучающихся, соответствующую требованиям времени
№ п\п
Наименование темы
Кол-во часов
Взаимосвязь с Программой воспитания (18)
1
Неравенства и системы неравенств
16+1
Урок исследование «Неравенство в космосе».
Интеллектуальные интернет – конкурсы по математике.
Диагностическая работа по определению уровня сформированности математической грамотности «Полочка в шкафу».
1.1
Контрольная работа №1
1
2
Системы уравнений
15+1
Урок-исследование «Решение систем уравнений».
Конкурс газет «В мире математики».
Викторина «От счёта на пальцах до современных вычислительных машин».
Деловая игра «Зачем изучаем алгебру».
Тренировочная работа по определению уровня сформированности математической грамотности «Дорога до дачи».
2.1
Контрольная работа №2
1
3
Числовые функции
25+2
Пятиминутки на уроках: «Знаменитые задачи древности».
Викторина «Графы и деревья».
Конкурс кроссвордов по теме «Числовые функции».
Турнир Смекалистых.
Конкурс презентаций «Исследование функций».
Обсуждение «Занимательные случаи из жизни математиков».
Тренировочная работа по определению уровня сформированности математической грамотности «Как измерить ширину реки».
3.1
Контрольная работа № 3
1
3.2
Контрольная работа № 4
1
4
Прогрессии
14+2
Урок-путешествие «Числовые лабиринты».
Урок творчества «За страницами учебников».
Мини проектные работы обучающихся по теме «Прогрессии».
4.1
Контрольная работа № 5
1
4.2
Контрольная работа № 6
1
5
Элементы комбинаторики, статистики и теории вероятностей
12+1
Урок «Экологические проблемы в статистике».
Интегрированный урок «Экология и энергосбережение»