Решение простых задач - основа успешного усвоения способов решения составных задач.
Решение простых задач - основа успешного усвоения способов решения составных задач.
Особую роль в повышении качества знаний, умений и навыков учащихся начальных классов играют задачи. В процессе их решения формируются основные математические понятия курса математики начальных классов, совершенствуются вычислительные навыки, развивается мышление и речь учащихся.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Решение простых задач - основа успешного усвоения способов решения составных задач.»
Решение простых задач - основа успешного усвоения способов решения составных задач.
Особую роль в повышении качества знаний, умений и навыков учащихся начальных классов играют задачи. В процессе их решения формируются основные математические понятия курса математики начальных классов, совершенствуются вычислительные навыки, развивается мышление и речь учащихся. Овладение учащимися умением решать задачи оказывает существенное влияние на их интерес к предмету.
Знакомство с простыми задачами начинается в 1-м классе при изучении чисел первого десятка. Это задачи на сложение и вычитание.
Во 2-м классе при изучении новых арифметических действий (умножение и деление) ребята знакомятся и с новыми задачами, при решении которых используются эти действия.
В 3-м классе происходит закрепление умений решать простые задачи, знакомство с задачами на нахождение доли числа, решаются задачи на цену, количество, стоимость.
В 4-м классе к новым видам простых задач относятся задачи, сформулированные в косвенной форме и задачи, с помощью которых раскрывается связь между величинами: скоростью, временем и расстоянием.
Каждый учитель из своего опыта знает, что сразу же после ознакомления с содержанием задачи ребёнок спешит назвать ответ и только по требованию учителя сообщает решение задачи (4 + 2 = 6).
Ошибки при этом маловероятны, потому что сюжеты задач близки жизненному опыту детей, числа в условии небольшие и, следовательно, нужное арифметическое действие и число – ответ можно найти даже по представлению, не прибегая к вычислениям. Решение задач кажется первокласснику совсем не сложным. Зарождается стремление и постепенно формируется прочная привычка сводить всю работу над задачей к простой вычислительной деятельности. Но, как известно, процесс решения любой текстовой задачи состоит из нескольких этапов.
Восприятие и первичный анализ задачи.
Поиск решения и составление плана решения.
Выполнение решения и получение ответа на вопрос задачи.
Проверка решения.
Формулировка окончательного ответа на вопрос задачи.
Основная цель ученика на первом этапе – понять задачу. Ученик должен чётко представить себе: О чём эта задача? Что в задаче известно? Что нужно найти? Как связаны между собой данные (числа, величины, значения величин)? Какими отношениями связаны данные и неизвестные, данные и искомое? Что является искомым: число, отношения, некоторое утверждение?
Можно выделить следующие возможные приёмы выполнения первого этапа решения текстовой задачи:
Представление той жизненной ситуации, которая описана в задаче, мысленное участие в ней. (Например: По тексту задачи представить ситуацию, описанную в нём.)
Разбиение текста задачи на смысловые части. Применение этого приёма обеспечивает как понимание содержания задачи, так и запоминание. На первых уроках по ознакомлению с задачами и для многих простых задач на последующих уроках полезно разбиение текста на части, описывающего: а) начало события; б) действие, которое произвели (произошло) с объектами задачи; в) конечный момент события, результат действия.
Переформулировка текста задачи: замена данного в нём описания ситуации другим, сохраняющим все отношения и зависимости и их количественные характеристики, но более явно их выражающим. Цель переформулировки – отбрасывание несущественных деталей, уточнение и раскрытие смысла существенных элементов задачи.
Моделирование ситуации, описанной в задаче, с помощью: а) реальных предметов, о которых идёт речь в задаче; б) предметных моделей; в) графических моделей в виде рисунка или чертежа.
Каждый из перечисленных выше приёмов начинается с чтения или слушания задачи. От того, как будет прочитана или прослушана задача, зависит её понимание, а следовательно, и эффективность дальнейших действий по её решению.
Основное требование к чтению задачи – правильное чтение всех слов, сочетаний слов, соблюдение знаков препинания, правильная расстановка логического ударения.
Обобщённые, или, по-другому, общие, умения решать задачи – это умения, необходимые и используемые при решении многих или хотя бы нескольких математических задач.
Формирование таких умений очень важная учебная задача в обучении математике: её решение существенно определяет уровень развития учащихся, их подготовленность самостоятельно решать предлагаемые им математические задачи. К сожалению, проблеме формирования обобщённых умений не уделяется должного внимания. Это приводит к тому, что в практике обучения нередко каждая предлагаемая учащимся математическая задача воспринимается ими как совершенно новая, которую нужно решать как-то по особому.
Термин “решение задачи” используется в двух смыслах: как обозначение ответа на вопрос задачи, т.е. как некоторый результат, так и обозначение процесса, ведущего к этому результату. В процессе решения математической задачи необходимы обобщённые умения разных видов, например умения выделять опорные слова, выполнять краткую запись задачи и т. д. Но особо важное значение имеют обобщённые умения, входящие в процесс поиска плана решения задачи.
Ребёнок мыслит образами, а его хотят научить мыслить абстрактно. Для этого очень важно при работе над задачей научить детей выделять основные (опорные) слова, которые связаны с действием, соответствующим сюжету.
Формирование умения записывать кратко простую задачу - необходимый элемент в обучении решению простых задач и подготовительный этап к ознакомлению с задачами в два действия.
Для этой цели можно использовать опоры — таблицы, выполненные по принципу перфокарт. Каждая таблица представляет определённый вид задач: нахождение суммы или одного из слагаемых, нахождение остатка, уменьшаемого или вычитаемого, увеличение или уменьшение числа на несколько единиц, на разностное сравнение чисел, увеличение или уменьшение в несколько раз и т.д.
Использование данных опор приучает первоклассников правильно оформлять задачи (постоянно видят образец), даёт возможность при работе различать задачи по их существенным признакам. Наряду с демонстрационными таблицами удобно использовать такие же индивидуальные, что позволяет включить в работу всех учеников. Опоры можно применять как перфокарты, делая записи на подложенном под таблицу листочке.
Проверка и самопроверка задач.В методике преподавания математике под проверкой решения задачи чаще всего понимают проверку ответа задачи. Известно несколько способов такой проверки:
составление и решение обратной задачи;
решение задачи другим способом;
соотнесение полученного результата и условия задачи или разыгрывание условий задачи;
прикидка ответа или установление его границ.
Овладение младшими школьниками умением решать простые задачи является необходимым условием успешного обучения решению составных задач. Речь идет не о заучивании и узнавании определенных видов простых задач, т.е. о навыке решения простых задач, а о формировании или отработке определенных умений, таких как читать задачу, выделять условие и вопрос (данные и искомое), устанавливать связь между данным и искомым, т. е. проводить анализ текста задачи, результатом которого является выбор арифметического действия для ее решения, записывать решение и ответ задачи.
Вывод.
При решении простых задачу детей формируется понятие о действиях, о задаче и её элементах, а также совершенствуются вычислительные навыки. Решением простых задач учащиеся подготавливаются к решению составных, в которые простые задачи входят как элементы. С помощью решения простых задач учащиеся усваивают зависимости между величинами и применение действий, то есть в процессе их решения дети усваивают, какой вопрос каким действием решается.