Просмотр содержимого документа
«История возникновения натурального числа»
Министерство образования, науки и молодёжной политики
Краснодарского края
Государственное бюджетное профессиональное образовательное учреждение Краснодарского края
«ЕЙСКИЙ ПОЛИПРОФИЛЬНЫЙ КОЛЛЕДЖ»
ПРОВЕРИЛ
________/_________/
«___»_________20___г.
История возникновения натурального числа, порядкового и количественного натурального числа, счета
Выполнила:
cтудентка Ш-31 группы
Прохорова Диана
Ейск, 2022г.
Зарождение счета в глубокой древности
Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века - палеолита. Пока не произошёл переход от простого собирания пищи к активному её производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Самым трудным этапом, который прошло человечество при выработке понятия о числе, считается выделение им понятия единицы из понятия "много". Оно произошло, по всей вероятности, ещё тогда, когда человечество находилось на низшей ступени развития. В.В. Бобынин объясняет такое выделение тем, что человек обычно захватывает рукой один предмет, а это, по его мнению, и выделило единицу из множества. Таким образом, начало счисления Бобынин мыслит как создание системы, состоящей из двух представлений: единица и неопределенное множество.
Так, например, племя ботокудов, жившее в Бразилии, выражало числа только словами "один" и "много". Появление элемента "два" объясняется выявлением возможности взять по одному предмету в каждую руку. На первоначальном этапе счёта человек связывал это понятие с понятием обеих рук, в которых находится по одному предмету в каждой, "три" характеризовалось поднятием обеих рук и указанием на ноги. Отсюда сравнительно характерно произошло выделение и понятие "четыре", так как с одной стороны, к этому побуждало сопоставление двух рук и двух ног, а с другой - возможность поместить по одному предмету у каждой ноги.
Дальнейшее развитие счета относится, вероятно, к той эпохе, когда сложилось первобытно-коммунистическое общество с соответствующим распределением пищи, одежды и орудия. Эти обстоятельства вынудили человека так или иначе вести счет общего имущества, сил врага, с которым приходилось вступать в борьбу за овладение новыми территориями. Процесс счета уже не мог остановиться на четырех и должен был развиваться далее и далее.
На этой ступени развития человек уже отказывается от необходимости брать пересчитываемые предметы в руку или класть к ногам. В математику входит первая абстракция, заключающаяся в том, что пересчитываемые предметы заменяются какими-либо другими однородными между собой предметами или знаками: камешками, узелками, ветками, зарубками. Операция производится по принципу взаимно-однозначного соответствия: каждому пересчитываемому предмету в соответствие один из предметов, выбранных в качестве орудия счета (то есть один камешек, один узелок на веревке и т.д.). Следы такого рода счета сохранились у многих народов и до настоящего времени. Иногда такие примитивные орудия счета (камешки, раковины, косточки) нанизывали на шнурок или палочку, чтобы не растерять. Это впоследствии привело к созданию более совершенных счётных приборов, сохранивших своё значение и до наших дней: русские счёты и сходный с ними китайский суан-пан.
Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал следующим образом. На низшей ступени первобытного общества понятие отвлеченного числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как например, "три человека", "три озера" и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись словесные обороты. Слово "три" в контекстах "три человека", "три лодки" передавались различно. Конечно, такие именованные числовые ряды были очень короткими и завершались индивидуализированным понятием ("много") о большом количестве тех или других предметов, которое тоже являлось именованным, то есть выражалось разными словами для предметов разного рода, такими, как "толпа", "стадо", "куча" и т.д.
Источником возникновения понятия отвлечённого числа является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона.
У большинства народов первым таким эталоном являются пальцы (пальцевой счет, о котором говорилось ранее), что без сомнений подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отличенным, не зависящим от качества считаемых предметов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших чисел стала использоваться новая идея - обозначения некоторого определенного числа (у большинства народов - десять) новым знаком, например зарубкой на другой палочке.
С развитием письменности возможности воспроизведения числа значительно расширились. Сначала числа стали обозначаться чёрточками на материале, служащем для записи (папирус, глиняные таблички и т.д.). Затем были введены другие знаки для больших чисел. Вавилонские клинописные обозначения числа, так же, как и сохранившиеся до наших дней "римские цифры", ясно свидетельствуют именно об этом пути формирования обозначения для числа. Шагом вперёд была индийская позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков - цифр. Таким образом, параллельно с развитием письменности понятие натурального числа закрепляется в форме слов (в устной речи) и в форме обозначения специальными знаками (в письменной).
Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения.
Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычное, что не возникло потребности в его определении в терминах каких - либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа - с другой, назрела необходимость обоснования понятия количественного натурального числа. Отчётливое определение понятия натурального числа на основе понятия множества (совокупности предметов) было дано в 70-х гг. 19в. в работах Г. Кантора. Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощными, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется как то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального числа как результата счёта предметов, составляющих данную совокупность.
Числа возникли из потребности счета и измерения и претерпели длительный путь исторического развития.
Было время, когда люди не умели считать. Чтобы сравнить конечные множества, устанавливали взаимно однозначное соответствие между данными множествами или между одним из множеств и подмножеством другого множества, т.е. на этом этапе человек воспринимал численность предметов без их пересчета. Например, о численности группы из двух предметов он мог говорить: "Столько же, сколько рук у человека", о множестве из пяти предметов - "столько же, сколько пальцев на руке". При таком способе сравниваемые множества должны были быть одновременно обозримы.
В результате очень долгого периода развития человек пришел к следующему этапу создания натуральных чисел - для сравнения множеств стали применять множества-посредники: мелкие камешки, раковины, пальцы. Эти множества-посредники уже представляли собой зачатки понятия натурального числа, хотя и на этом этапе число не отделялось от сосчитываемых предметов: речь шла, например, о пяти камешках, пяти пальцах, а не о числе "пять" вообще. Названия множеств-посредников стали использовать для определения численности множеств, которые с ними сравнивались. Так, у некоторых племен численность множества, состоящего из пяти элементов, обозначалась словом "рука", а численность множества из 20 предметов - словами "весь человек".
Только после того как человек научился оперировать множествами-посредниками, установил то общее, что существует, например, между пятью пальцами и пятью яблоками, т.е. когда произошло отвлечение от природы элементов множеств-посредников, возникло представление о натуральном числе. На этом этапе при счете, например, яблок, не перечислялись уже "одно яблоко", "два яблока" и т.д., а проговаривались слова "один", "два" и т.д. Это был важнейший этап в развитии понятия числа. Историки считают, что произошло это в каменном веке, в эпоху первобытнообщинного строя, примерно в 10-5 тысячелетии до н.э.
Натуральные числа являются целыми числами. К целым числам относится и нуль, но оно не принадлежит к натуральным числам. Не следует смешивать понятия "числа" и "цифры". Различных чисел можно записать сколько угодно, а цифр - только десять. Любое натуральное число мы записываем с помощью этих десяти цифр. Производя счет предметов, используют натуральное число как характеристику порядка. В задачах, связанных с измерением величин, число выступает как значение величины при выбранной единице, т.е. как мера величины. Большое внимание уделяется еще одной роли числа - как компоненту вычислений. Таким образом, натуральное число имеет много функций.
Основными функциями натуральных чисел являются:
1. Характеристика количества предметов;
2. Характеристика порядка предметов, размещенных в ряд.
В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т. т.) и количественного числа (один, два и т.д.). В частности, расположения в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребляемым с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов.).