kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Урок - творческая лаборатория

Нажмите, чтобы узнать подробности

Современные педагогические технологии  как средство решения математических задач.

               Математика всегда была неотъемлемой и существенной составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности.  Творческая деятельность учащихся не ограничивается лишь приобретением нового. Работа будет творческой, когда в ней проявляется собственный замысел учащихся, ставятся новые задачи, и они самостоятельно решаются при помощи приобретенных знаний, при активном участии в проектной и исследовательской деятельности. Это позволяет развивать познавательную активность учащихся, творческие способности и сообразительность. В процессе такой работы ребята учатся работать с дополнительной литературой, историческим материалом, устанавливать внутрипредметные и межпредметные связи. Всё это будет проявляться ярче, быстрее и качественнее, если на уроках применяются современные информационные и педагогические технологии.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Урок - творческая лаборатория»

Муниципальное образовательное учреждение

средняя общеобразовательная школа с углубленным изучением отдельных предметов

МОУ СШ № 21





















Применение метода оценки к решению уравнений

Урок - творческая лаборатория


















Лазарева С.И.

учитель математики МОУ СШ №21

Суханова Н.А

учитель математики МОУ СШ №21

Ульянова Н.В.

Учитель математики и информатики

МОУ СШ №21

Ракович И.М.

учитель математики МОУ СШ №21






2015-2016 учебный год

Современные педагогические технологии как средство решения математических задач.

Математика всегда была неотъемлемой и существенной составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности. Творческая деятельность учащихся не ограничивается лишь приобретением нового. Работа будет творческой, когда в ней проявляется собственный замысел учащихся, ставятся новые задачи, и они самостоятельно решаются при помощи приобретенных знаний, при активном участии в проектной и исследовательской деятельности. Это позволяет развивать познавательную активность учащихся, творческие способности и сообразительность. В процессе такой работы ребята учатся работать с дополнительной литературой, историческим материалом, устанавливать внутрипредметные и межпредметные связи. Всё это будет проявляться ярче, быстрее и качественнее, если на уроках применяются современные информационные и педагогические технологии.

Технические средства способствуют активизации учебного процесса, помогают нам эффективно проводить уроки, организовывать быстрый доступ к запланированной информации, решать задачи практического содержания, выполнять исследовательскую работу. Больше внимания уделить математической речи, формированию познавательного интереса к предмету и творческой активности, отработки вычислительных навыков, и навыков анализа и сравнения, исследовательской деятельности. На данном уроке-творческой лаборатории по теме «Применение метода оценки к решению уравнений» благодаря предварительной работе с дополнительной литературой, интернетом, подготовке презентаций, а самое главное исследовательской деятельности обучающихся, расширяется кругозор, повышается познавательная активность. Эпиграфом нашего урока стало высказывание С. Коваля: «Решение уравнений это золотой ключ, открывающий все сезамы». Урок проведен был для учащихся 10 и 11 классов. Для 10 класса это был урок обобщения и систематизации знаний по теме «Решение уравнений и неравенств» и в тоже время некоторый материал был для них новым и ранее не изученным. Для 11 класса этот урок был одним из этапов подготовки к ЕГЭ. После урока обучающиеся высказали свое мнение о проведенном совместном занятии. Такой подход к изучению математики вызвал интерес у учащихся и они выразили желание проводить такие уроки чаще.

Широкое применение таких технологий при изучении математики даёт возможность реализовать принцип «учение с увлечением». И это очень важно, ведь всем понятно, что учебная успешность школьника определяется не только и не столько его способностями, сколько желанием учиться, то есть мотивацией. Познавательные мотивы в самом широком смысле – это желание ребёнка освоить новые знания или способы получения новых знаний. Все это в совокупности позволило повысить информативность урока, эффективность обучения, придать уроку динамизм и выразительность. Известно, что в среднем с помощью органов слуха усваивается лишь 15% информации, с помощью органов зрения 25 %. А если воздействовать на органы восприятия комбинированно, усвоенными окажутся около 65 % информации. Уроки с применением современных педагогических технологий в купе с креативным подходом позволяет решить старую проблему - низкую степень индивидуализации обучения, усилить темп умственной деятельности, обеспечивает творческий рост, как учащихся, так и учителя.















Тема: Применение метода оценки к решению уравнений.

Урок – творческая лаборатория для учащихся 10 и 11 классов.

Цель:

  • Повторить основные методы решения уравнений:

  1. Разложение на множители.

  2. Введение новой переменной.

  3. Понижение степени.

  4. Возведение обеих частей в степень

  5. Умножение обеих частей уравнения на выражение, не принимающее значение- равное нулю.

  • Систематизировать и обобщить применение метода оценки:

  1. Использование монотонности функции

  2. Использование ограниченности функции

  3. Использование ОДЗ

  4. Применение неравенства Коши

  5. Неравенство Бернулли и его применение

  • Активизировать творческую активность учащихся;самостоятельность при работе с дополнительной литературой, отборе практического материала по заданной теме.

  • Развивать вариативность мышления, логику, анализ, ораторские способности.

Оборудование: Проектор, презентация к уроку, программа «Живая математика», компьютер, карточки с заданиями.

Предварительная подготовка: Задания старшим групп и консультации по данной теме: Лазарева С.И. (10 класс) - неравенство Коши и его применение, Суханова Н.А.(11 класс) - неравенство Бернулли и его применение, Ульянова Н.В.(10-11 классы) - создание презентаций.



Ход урока.

  1. Учитель математики 10 класса (слайд №1).

Мы приветствуем всех любителей математики в нашей творческой лаборатории. Тема нашего занятия «Применение метода оценки к решению уравнений», а эпиграфом мы выбрали слова: «Решение уравнений это золотой ключ, открывающий все сезамы». Сегодня мы рассмотрим несколько нестандартных методов решения задач по математике. Незнание и непонимание таких методов существенно уменьшает область успешно решаемых задач. Тем более, что имеющая место тенденция к усложнению заданий ЕГЭ по математике стимулирует появление новых оригинальных (нестандартных) подходов к решению математических задач.

И в 10, и в 11 классах мы решали достаточно много разных видов уравнений, используя при этом различные способы и приемы решения (слайд №2). На заседании нашей творческой лаборатории мы обобщим и систематизируем полученные ранее знания. Кроме того мы попытаемся подняться на более высокую ступеньку знаний, получив ещё один инструмент решения уравнений: методом оценки. Итак, остановимся на рассмотрении приема «Метод оценки», который включает в себя:

  1. Использование монотонности функций

  2. Использование ограниченности функций

  3. ОДЗ

  4. Неравенство Коши

  5. Неравенство Бернулли

Рассмотрим решение уравнения несколькими способами и оценим рациональность какого-либо метода.

  1. А) Ученица 10 класса показывает решение уравнения двумя способами.

X-2=





Решение:

1 способ (по алгоритму): (слайд №3).

X-2= ˂=˃

˂=˃ x=2

2 способ (использование монотонности функции): (слайд№4)

Т.к. y1(x)=X – 2 – возрастающая функция,

y2(x)= - убывающая функция, то если корень существует, то он единственный (Если функция непрерывна и возрастает (убывает) на отрезке , а функция непрерывна и убывает (возрастает) на этом же отрезке, то уравнение на отрезке может иметь не более одного корня.)

Из уравнения очевидно, что x=2. (на слайде №4 графическая интерпретация). Это решение достойно внимания, запишите его в тетрадь.

Б) Учитель математики 10 класса: «Чтобы решить уравнение,
Корни его отыскать,
Нужно немного терпенья,
Ручку, перо и тетрадь»

Предлагаю выполнить задания по группам с последущей проверкой.

    1. 2x = 6 – x

    2. 8 - x=

  1. Использование ограниченности функций

А) Учитель математики 11 класса. Одним из эффективных методов решения уравнений или неравенств является метод, основанный на использовании ограниченности функций. К наиболее известным ограниченным функциям относятся, например, некоторые тригонометрические функции; обратные тригонометрические функции; функции, содержащие модуль, степень, корень с четной степенью и т.д. Ученик 11 класса покажет применение этого метода на примере решения уравнения. Так как для учащихся 10 класса, я думаю, такое решение будет открытием, то его надо записать в тетради.

(слайд №5)

Рассмотрим функции y1(x) = , y2(x)= . Обе функции ограничены:

E (y1) = [-1;1], E(y2) = [1; ]. То есть уравнение имеет решение в случае:

Ни при как значениях n (целых), корни уравнений не совпадут, значит исходное уравнение не имеет решения (на слайде №5 графическая интерпретация).

Б) Т. к "Усердие все превозмогает" давайте решим уравнение на данный метод (по парам)

|x+2| = - (x+2)2 (Ответ: -2)

3.

А) Учитель математики 10 класса приглашает ученицу 10 класса для решения уравнения:



1 способ: Это уравнение решается традиционным способом, возведением последовательно дважды в квадрат. Решение громоздкое и не рациональное. 2 способ . Я предлагаю более изящное решение этого уравнения. Предлагаю записать его в тетрадь. (слайд №5, ссылка с графической интепретации)



Решение:

Очевидно, чтобы решение существовало необходимо потребовать, чтобы x+2x+5, тогда 25 не верно = уравнение решений не имеет.

Б) Ученик 10 класса предлагает два способа решения уравнения:



Решение

1 способ. Предлагаю вам план стандартного решения.

    1. ОДЗ [-3;0)(0;3]

    2. При приведении к общему знаменателю получаем уравнение

, которое решается по алгоритму. Вывод: решение очень громоздкое

    1. В итоге получаем

2 способ решения более рациональный (с использованием неравенства Коши) (слай №7, №8, №9).

Заменим , тогда



По неравенству Коши получаем



Так как равенство достигается лишь в случае равенства слагаемых (следствие из неравентсва Коши: )

Получим

Так как y, то 3+y , получаем







Так как , то или

решений нет

Ответ:

Проще и красивее. А как думаете вы? (Решение даётся учащимся на карточке)

4. Учитель математики 11 класса. Для решения следующего уравнения красивым, удобным методом является метод, основанный на использовании ОДЗ. А) Ученик 11 класса предлагает решение уравнения:



Решение: (слайд №10, №11)

1 способ

ОДЗ:

Оценим слагаемые на ОДЗ. С учетом верхней границы и нижней границы ОДЗ.







Очевидно, что , значит , т.е. уравнение не имеет решений.

Очень красивое решение получается при применеии неравенства Бернулли. Б) Ученик11 класса знакомит с краткой биографией Я. Бернулли (слайд№12, №13)

В) Ученик 11 класса знакомит с обобщённым неравенством Бернулли и показывает решение предыдущего уравнения с его применением (слайд №14, №15, №16)

Используем обобщенное неравенство Бернулли: если , то

т.к. x -1, p=0,25, то









– не верно, значит уравнение не имеет решений.

Г) Ученик 11 класса предлагает решение уравнения:

(слайд № 17). Решение даётся учащимся на карточке.

5.Итог урока: Слайд №2, Следует отметить, что знание нестандартных методов и приемов решения задач по математике способствует развитию нового, нешаблонного мышления, которое можно успешно применять также и в других сферах человеческой деятельности (кибернетика, вычислительная техника, экономика, радиофизика, химия и т.д.).

«Теория без практики мертва и бесплодна, практика без теории невозможна и пагубна. Для теории нужны знания, для практики, сверх того, и умение.» ( слайд №18)

Учите теорию, применяйте полученные знания на практике, и перед вами откроется огромный мир непостижимого и прекрасного.

Отметки за урок.

6. «Результат учения равен 
произведению способности на старательность.
Если старательность равна нулю, 
то и произведение равно нулю.
А способности есть у каждого."  Предлагаем проявить способности и старательность при выполнении домашнего задания, которое вы можете увидеть на карточке. В наших классах много творческих личностей, способных к самостоятельным исследованиям, поэтому мы надеемся, что вы сможете использовать один из приёмов решения рассмотренных на уроке, а, быть может, кто-то из вас откроет новый приём.











ЫАНа перемене взять интервю у учащихся 10 и 11 классов.



На слайд:



Применяем неравенство Бернулли к каждому слагаемому

=(1+

=(1 -

+ 1+



Равенство возможно лишь при

Ответ x=



Решите дома:

+



Чтобы решить уравненье,
Корни его отыскать,
Нужно немного терпенья,
Ручку, перо и тетрадь.

Эпиграф к уроку:  Посредством уравнений,теорем

                          Я уйму всяких разрешил проблем.

                             (английский поэт средних веков Чосер)

Эпиграф сегодняшнего урока:
"Результат учения равен 
произведению способности на старательность.
Если старательность равна нулю, 
то и произведение равно нулю.
А способности есть у каждого." 

Нужно думать, что все науки

настолько связаны между

собой, что легче изучать их

все сразу, нежели какую-

либо одну из них в

отдельности от всех прочих.

Рене Декарт

«Решение уравнений это золотой ключ, открывающий все сезамы».С. Коваль

9.Рефлексия: сегодня на уроке мне понравилось……

-с собой в жизнь возьму с собой….

-если бы я был учителем, то бы я сделал….

 "Усердие все превозмогает"

Уравнение есть равенство, которое еще не является истинным, но которое стремятся сделать истинным, не будучи уверенными, что этого можно достичь. А.Фуше.




Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 10 класс

Скачать
Урок - творческая лаборатория

Автор: Ульянова Н.В., Лазарева С.И., Ракович И.М,, Суханова Н.А.

Дата: 16.06.2016

Номер свидетельства: 335011

Похожие файлы

object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(190) "Мой дом — обобщающий урок литературного чтения по творчеству   М.Ю. Лермонтова. Творческая лаборатория. "
    ["seo_title"] => string(116) "moi-dom-obobshchaiushchii-urok-litieraturnogho-chtieniia-po-tvorchiestvu-m-iu-liermontova-tvorchieskaia-laboratoriia"
    ["file_id"] => string(6) "198055"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1428340958"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(72) "«Творческая лаборатория в библиотеке» "
    ["seo_title"] => string(41) "tvorchieskaia-laboratoriia-v-bibliotiekie"
    ["file_id"] => string(6) "164630"
    ["category_seo"] => string(7) "prochee"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1422681392"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(203) "Реализация  деятельностного подхода посредством активных методов обучения и воспитания  на уроках технологии"
    ["seo_title"] => string(113) "riealizatsiiadieiatielnostnoghopodkhodaposriedstvomaktivnykhmietodovobuchieniiaivospitaniianaurokakhtiekhnologhii"
    ["file_id"] => string(6) "319159"
    ["category_seo"] => string(12) "tehnologiyad"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1460742921"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(203) "Реализация  деятельностного подхода посредством активных методов обучения и воспитания  на уроках технологии"
    ["seo_title"] => string(114) "riealizatsiiadieiatielnostnoghopodkhodaposriedstvomaktivnykhmietodovobuchieniiaivospitaniianaurokakhtiekhnologhii1"
    ["file_id"] => string(6) "319160"
    ["category_seo"] => string(12) "tehnologiyad"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1460742929"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(107) "Реализация  деятельностного подхода  на уроках технологии"
    ["seo_title"] => string(61) "riealizatsiiadieiatielnostnoghopodkhodanaurokakhtiekhnologhii"
    ["file_id"] => string(6) "319162"
    ["category_seo"] => string(12) "tehnologiyad"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1460743229"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства