kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Корень n-й степени и его свойства

Нажмите, чтобы узнать подробности

ПРедставлен конспект урока по теме:   Корень n-й степени и его свойства. С разработкой самостоятельной работы по актуализации новых знаний.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Корень n-й степени и его свойства»

Корень n-й степени и его свойства

А.Г. Мордкович. Алгебра и начала анализа.

Цели урока:


  • Образовательная: расширить и обобщить знания учащихся по данной теме, овладеть свойствами корня п-ой степени.

  • Развивающая: развитие коммуникативных способностей.

  • Воспитательная: формирование активной жизненной позиции, умение работать и преодолевать трудности, воспитание интереса к предмету.


Средства обучения: карточки, таблицы.

Тип урока: урок обобщения и систематизации знаний.

Форма обучения: индивидуальная и групповая.


Ход урока


«Мышление начинается с удивления»

Аристотель

  1. Организационный момент: приветствие, выявление готовности учащихся к уроку, постановка цели.

  2. Разминка.

  3. Актуализация опорных знаний.

  4. Обобщение и закрепление материала.

Ход урока.

Вопросы для разминки.

  1. Так называют выражение хn. (степень)

  2. Есть у любого слова, у растения, может быть n-й степени. (корень)

  3. Степень корня, кратная 2. (четная)

  4. Степень корня 2 k+1. (нечетная).

  5. Как можно иначе назвать корень третьей степени? (кубический)

  6. Действие, посредством которого отыскивают корень. (извлечение).

  7. Положительный корень. (арифметический).

  8. Как можно иначе назвать арифметический корень второй степени? (квадратный).


Актуализация опорных знаний.

а) Свойства арифметического квадратного корня:


 =  , а ≥ 0 , в ≥0

=  , а≥0, b0

б) свойства степени с натуральным показателем:










 = 

Формирование новых знаний. Аналогично определению квадратного корня из числа a определяется корень n-ной степени из числа а, где n- произвольное натуральное число, n1.

Определение. Корнем n-ной степени из числа а называется такое число, n-ная степень которого равна а.


а)  

б =2, 

в) = -3

Рассмотрим уравнение = a. Число корней этого уравнения зависит от n и a.

Рассмотрим функцию f(x)=. При x и n –любое число- возрастает, и a имеет неотрицательный корень и только один x=.

Определение. Арифметическим корнем n-ной степени из числа a называют неотрицательное число, n -ая степень которого равна a.

При четном n существует два корня n-ной степени из любого положительного числа a, корень четной степени из отрицательных чисел не существует. При нечетном n существует корень n-ной из любого числа a и притом только один.

Краткая запись (в тетради).

n- четное число

=a, a0

=

X= -

а) = 7 , 7 =343 в)= -3 = -243

основные свойства арифметических корней n-ной степени.

Для любых чисел n € N , k € N, n 1 и k1 , a0, b0 выполняются равенства :

  1. = ;

  2.  = ;

  3. = ;

  4. 

  5. =( ) k

  6.   0≤ a ab


Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.

Теорема 1. Корень n-й степени (n=2, 3, 4,...) из произведения двух неотрицательных чипсел равен произведению корней n-й степени из этих чисел: 

Замечание:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.

Теорема 2. Если и n - натуральное число, большее 1, то справедливо равенство 


Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.
Теорема 1 позволяет нам перемножать только корни одинаковой степени, т.е. только корни с одинаковым показателем. 

Теорема 3. Если, k - натуральное число и n - натуральное число, большее 1, то справедливо равенство

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это — следствие теоремы 1. В самом деле, например, для к = 3 получаем:  Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Теорема 4. Если, k, n - натуральные числа, большее 1, то справедливо равенство

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например, 

Будьте внимательны! Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак.
Например, вместо  нельзя написать  В самом деле,  Но ведь очевидно, что  

Теорема 5. Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т.е

Обобщение и закрепление материала.

Задание 1. Вычислите.


а)


б)


в)


Задание2. Докажите:


 -=2

Задание3. Вычислите.


1) =  =  = 2


2)  =  =  = 


3)  = = - 

Трехуровневая самостоятельная работа с целью проверить знания, умения и навыки по теме^

« Корень п-ой степени и его свойства»


№ 1. Вычислить (А)


1вариант 2 вариант


  1.  ∙  1)  ;

  2. 2  ; 2)  ∙  ;

  3. ; 3) -6 ∙  ;



№ 2 . Найдите значение выражения (В)


1)  ∙  = 1)  7 ∙  =


2)  = 2)  =



№ 3. Упростите (С)


 





Подведение итогов урока



Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: Прочее.
Урок соответствует ФГОС

Скачать
Корень n-й степени и его свойства

Автор: Агеенко Ирина Александровна

Дата: 26.10.2018

Номер свидетельства: 482232

Похожие файлы

object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(128) "Конспект урока математики "Корень n-ой степени и его свойства", 11 класс."
    ["seo_title"] => string(64) "konspiekturokamatiematikikoriennoistiepieniiieghosvoistva11klass"
    ["file_id"] => string(6) "263044"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1449475960"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(108) "Корень n-ой степени из действительного числа и его свойства"
    ["seo_title"] => string(67) "korien-n-oi-stiepieni-iz-dieistvitiel-nogho-chisla-i-iegho-svoistva"
    ["file_id"] => string(6) "301109"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1456850721"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(127) "Алгебра. 10 класс. План урока по теме: Корень n-ой степени и его свойства"
    ["seo_title"] => string(78) "alghiebra_10_klass_plan_uroka_po_tiemie_korien_n_oi_stiepieni_i_iegho_svoistva"
    ["file_id"] => string(6) "369582"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1481715299"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(84) "Урок по теме: Корень n-й степени и его свойства."
    ["seo_title"] => string(45) "urok_po_teme_koren_n_i_stepeni_i_ego_svoistva"
    ["file_id"] => string(6) "565425"
    ["category_seo"] => string(7) "algebra"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1607079730"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(136) "Конспект урока 9 класс     «Свойства функции у = х^n. Понятие корня степени n.» "
    ["seo_title"] => string(77) "konspiekt-uroka-9-klass-svoistva-funktsii-u-kh-n-poniatiie-kornia-stiepieni-n"
    ["file_id"] => string(6) "237784"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1444395452"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства