kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Конспект урока по геометрии для 10 класса по теме "Площадь поверхности призмы"

Нажмите, чтобы узнать подробности

Тема урока: «Площадь поверхности призмы».

 Класс: 10

Форма проведения: практикум по решению задач с практическим содержанием (на 2 урока).

Цели и задачи урока:

  1. Обобщить и систематизировать имеющиеся у учащихся сведения о призме,               

площади боковой и полной поверхности призмы.

  1. Способствовать формированию умений применять теоретические знания к решению задач с практическим содержанием.
  2. Формирование умений у учащихся вести исследовательскую работу.
  3. Способствовать формированию умений проводить оценку и самооценку знаний и умений.
  4. Развивать логическое мышление, интерес к предмету, умение работать самостоятельно, в группе, в паре.
  5. Способствовать воспитанию отзывчивости, трудолюбия, аккуратности.

         Технические средства: компьютер, проектор, презентация.

         Дополнительное оборудование: карточки с вопросами теста, карточки с задачами, модели призм, упаковки для сока, учебные принадлежности.

Ход урока:

  1. Организационный момент.

            Эпиграф к уроку: «Рано или поздно всякая правильная математическая идея находит     

            применение в том или ином деле».

                                                                                                                      А.Н.Крылов

  1. Мотивационная беседа.

 Представим себе, что мы работаем в экономическом отделе предприятия по изготовлению упаковок для сока. Необходимо просчитать, какая упаковка будет экономически выгодна для производства: упаковка, имеющая форму правильного тетраэдра или упаковка, имеющая форму прямоугольного параллелепипеда. Но, прежде чем приступать к работе, давайте повторим теоретические вопросы по теме «Призма. Площадь поверхности призмы». 

  1. Актуализация знаний.

Тест на повторение теоретического материала по теме (работа в парах, с взаимопроверкой и исправлением неправильных ответов). (Приложение 1)

  1. Решение задачи экономического отдела по изготовлению упаковки. (работа в группах). Каждая группа получает карточку с таблицами, упаковки для сока. (Приложение 2)

Определим экономически выгодную упаковку. Найдем, сколько завод будет экономить картона в день, если будет выпускать 3000 упаковок для сока.

  1. Решение задач с практическим содержанием. (работа в группах с проверкой хода решения задачи). (Приложение 3)
  2. Подведение итогов урока. Учитель предлагает закончить предложения:

            – «Сегодня на уроке я понял (а), что мне необходимо…»

            – «При решении задач с практическим содержанием необходимо…»

            – «Самое трудное для меня…»

  1. Домашнее задание: подобрать или придумать задачу с практическим содержанием по теме «Призма».

Методическая литература:

  1. Атанасян, Л.С. и др. Геометрия 10-11 класс. Учебник для общеобразовательных учреждений / Л.С. Атанасян и др. – М.: Просвещение, 2008. – 206 с.
  2. Ершова, Е.П, Голобородько, В.В. Устные проверочные и зачетные работы по геометрии для 10-11 класса / Е.П.Ершова, В.В. Голобородько – М.: ИЛЕКСА, 2005. – 112 с.

Интернет-ресурсы:

  1. http://www.slideshare.net/marinmets/matemaatikaeksam
  2. http://festival.1september.ru/mathematics/page-2
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Конспект урока по теме Площадь поверхности призмы»


Тема урока: «Площадь поверхности призмы».

Класс: 10

Форма проведения: практикум по решению задач с практическим содержанием (на 2 урока).

Цели и задачи урока:

  1. Обобщить и систематизировать имеющиеся у учащихся сведения о призме,

площади боковой и полной поверхности призмы.

  1. Способствовать формированию умений применять теоретические знания к решению задач с практическим содержанием.

  2. Формирование умений у учащихся вести исследовательскую работу.

  3. Способствовать формированию умений проводить оценку и самооценку знаний и умений.

  4. Развивать логическое мышление, интерес к предмету, умение работать

самостоятельно, в группе, в паре.

  1. Способствовать воспитанию отзывчивости, трудолюбия, аккуратности.

Технические средства: компьютер, проектор, презентация.

Дополнительное оборудование: карточки с вопросами теста, карточки с задачами, модели призм, упаковки для сока, учебные принадлежности.

Ход урока:

  1. Организационный момент.

Эпиграф к уроку: «Рано или поздно всякая правильная математическая идея находит

применение в том или ином деле».

А.Н.Крылов

  1. Мотивационная беседа.

Представим себе, что мы работаем в экономическом отделе предприятия по изготовлению упаковок для сока. Необходимо просчитать, какая упаковка будет экономически выгодна для производства: упаковка, имеющая форму правильного тетраэдра или упаковка, имеющая форму прямоугольного параллелепипеда. Но, прежде чем приступать к работе, давайте повторим теоретические вопросы по теме «Призма. Площадь поверхности призмы».

  1. Актуализация знаний.

Тест на повторение теоретического материала по теме (работа в парах, с взаимопроверкой и исправлением неправильных ответов). (Приложение 1)

  1. Решение задачи экономического отдела по изготовлению упаковки. (работа в группах). Каждая группа получает карточку с таблицами, упаковки для сока. (Приложение 2)

Определим экономически выгодную упаковку. Найдем, сколько завод будет экономить картона в день, если будет выпускать 3000 упаковок для сока.

  1. Решение задач с практическим содержанием. (работа в группах с проверкой хода решения задачи). (Приложение 3)

  2. Подведение итогов урока. Учитель предлагает закончить предложения:

– «Сегодня на уроке я понял (а), что мне необходимо…»

– «При решении задач с практическим содержанием необходимо…»

– «Самое трудное для меня…»

  1. Домашнее задание: подобрать или придумать задачу с практическим содержанием по теме «Призма».

Методическая литература:

  1. Атанасян, Л.С. и др. Геометрия 10-11 класс. Учебник для общеобразовательных учреждений / Л.С. Атанасян и др. – М.: Просвещение, 2008. – 206 с.

  2. Ершова, Е.П, Голобородько, В.В. Устные проверочные и зачетные работы по геометрии для 10-11 класса / Е.П.Ершова, В.В. Голобородько – М.: ИЛЕКСА, 2005. – 112 с.

Интернет-ресурсы:

  1. http://www.slideshare.net/marinmets/matemaatikaeksam

  2. http://festival.1september.ru/mathematics/page-2
















Приложение 1

Тест. 1 вариант.

1). Призма – это выпуклый многогранник, который состоит из:

а) многоугольника и нескольких параллелограммов

б) двух равных многоугольников и нескольких параллелограммов

в) двух равных многоугольников, лежащих в параллельных плоскостях,

и п параллелограммов

2). В основании призмы лежит:

а) любой выпуклый многоугольник

б) только правильный многоугольник

в) любой многоугольник или окружность

3). Призма является прямой, если:

а) боковые ребра перпендикулярны основаниям

б) основания – правильные многоугольники

в) некоторые боковые грани – квадраты

4). Призма является правильной, если:

а) в основании лежит правильный многоугольник

б) боковые грани перпендикулярны основаниям

в) она прямая и в основании лежит правильный многоугольник

5). Высотой прямой призмы можно считать:

а) ребро основания

б) боковое ребро

в) любой отрезок, перпендикулярный основанию

6). Площадь боковой поверхности призмы – это:

а) сумма площадей всех боковых граней

б) сумма площадей двух оснований

в) сумма площадей всех её граней

7). Площадь полной поверхности призмы – это:

а) сумма площадей всех боковых граней

б) сумма площадей двух оснований

в) сумма площадей всех её граней

8). Площадь боковой поверхности прямой призмы можно найти по формуле:

а) Sбок=Sосн·h

б) Sбок=а·h, где а – сторона основания

в) Sбокосн·h

9). Площадь полной поверхности прямой призмы можно найти по формуле:

а) Sполн=Sосн+ Sбок

б) Sполн=2Sосн+ Sбок

в) Sполн=2Росн+ Sбок

Тест. 2 вариант.

1). Призма – это выпуклый многогранник, который состоит из:

а) двух равных многоугольников, лежащих в параллельных плоскостях,

и п параллелограммов

б) двух равных многоугольников и нескольких параллелограммов

в) многоугольника и нескольких параллелограммов

2). В основании призмы лежит:

а) только правильный многоугольник

б) любой многоугольник или окружность

в) любой выпуклый многоугольник

3). Призма является прямой, если:

а) некоторые боковые грани – квадраты

б) боковые ребра перпендикулярны основаниям

в) основания – правильные многоугольники

4). Призма является правильной, если:

а) в основании лежит правильный многоугольник

б) она прямая и в основании лежит правильный многоугольник

в) боковые грани перпендикулярны основаниям

5). Высотой прямой призмы можно считать:

а) боковое ребро

б) любой отрезок, перпендикулярный основанию

в) ребро основания

6). Площадь боковой поверхности призмы – это:

а) сумма площадей всех её граней

б) сумма площадей двух оснований

в) сумма площадей всех боковых граней

7). Площадь полной поверхности призмы – это:

а) сумма площадей всех боковых граней

б) сумма площадей всех её граней

в) сумма площадей двух оснований

8). Площадь боковой поверхности прямой призмы можно найти по формуле:

а) Sбокосн·h

б) Sбок=Sосн·h

в) Sбок=а·h, где а – сторона основания

9). Площадь полной поверхности прямой призмы можно найти по формуле:

а) Sполн=Sосн+ Sбок

б) Sполн=2Росн+ Sбок

в) Sполн=2Sосн+ Sбок


































Приложение 2

Таблица 1. Определение площади поверхности упаковки, имеющей форму прямоугольного параллелепипеда (вместимость – 0,2 литра)

Кол-во упаковок

Длина
(а)

Ширина
(b)

Высота
(h)


Sосн.

Sбок.пов.

Sполн.пов.

1







Таблица 2. Определение площади поверхности упаковки, имеющей форму 

правильного тетраэдра  (вместимость – 0,2 литра).

Кол-во
упаковок

Сторона
грани  
(а)

S1
(площадь одной грани
по ф-ле Герона)

Sполн.пов. 

1





Примерный ход работы.

Таблица 1. Определение площади поверхности упаковки, имеющей форму прямоугольного параллелепипеда (вместимость – 0,2 литра)

Кол-во
упаковок

Длина
(а)

Ширина
(b)

Высота
(h)


Sосн.

Sбок.пов.

Sполн.пов.

1

5 см

3,5 см

12 см

17,5 см2

204 см2

239 см2 = 0,0239 м2

Тогда на 3000 упаковок надо 71,7 м2 ≈ 72 м2

Таблица 2. Определение площади поверхности упаковки, имеющей форму 

правильного тетраэдра  (вместимость – 0,2 литра).

Кол-во
упаковок

Сторона
грани  
(а)

S1
(площадь одной грани
по ф-ле Герона)

Sполн.пов. 

1

12 см

62,4 см2

249,6 см2 =0,02496 м2

Тогда на 3000 упаковок надо 74,88 м2 ≈ 75 м2

Экономия составит: на 1 упаковке – 10,6 см2; на 3000 упаковок – 3 м2.

Вывод:  экономически более выгодна будет упаковка, имеющая форму прямоугольного параллелепипеда.

































Приложение 3

Задачи

с практическим содержанием по теме «Площадь поверхности призмы».


1). На заводе игрушек выпускают наборы кубиков. В набор входит по 10 кубиков красного, зеленого, синего и желтого цвета. Сколько пластмассы каждого цвета понадобиться для одного такого набора, если ребро кубика 10 см? (по 0,6 м2 пластмассы каждого цвета )


2). Коллекционер заказал аквариум, имеющий форму правильной шестиугольной призмы. Сколько квадратных метров стекла необходимо для изготовления аквариума, если сторона основания 0,5 м, а высота 1,2 м? Ответ округлите до сотых. (4,24 м2)


3). На даче нужно покрасить с внешней и внутренней стороны бак с крышкой для воды. Бак имеет форму прямой призмы высотой 1,5 м. В основании призмы лежит прямоугольный треугольник с катетами 0,6 м и 0,8 м. В магазине имеется краска в банках по 1 кг и 2,5 кг. Сколько и каких по массе банок краски надо купить для покраски бака, если на 1 квадратный метр расходуется 0,2 кг краски? (m≈1,8 кг; 2 банки по 1 кг)


4). На заводе выпускают подарочные коробки в виде прямой призмы, в основании которой лежит ромб с диагоналями 24 см и 10 см. Площадь полной поверхности призмы равна 760 кв.см. Какой будет высота этой коробки? (10 см)


5). Необходимо изготовить короб с крышкой для хранения картофеля в форме прямой призмы высотой 0,7 м. В основании призмы лежит равнобедренная трапеция с основаниями 0,4 м и 0,6 м и боковой стороной 0,5 м. Сколько фанеры понадобиться для изготовления короба? Ответ округлите до целого числа. (2 м2)

Просмотр содержимого презентации
«Площадь поверхности призмы»

Площадь  поверхности призмы Практикум решения задач с практическим содержанием

Площадь поверхности призмы

Практикум решения задач с практическим содержанием

Проверим ответы теста:

Проверим ответы теста:

  • 1 вариант: в, а, а, в, б, а, в, в, б.
  • 2 вариант: а, в, б, б, а, в, б, а, в.
Задача экономического отдела  Таблица 1. Определение площади поверхности упаковки,  имеющей форму прямоугольного  параллелепипеда (вместимость – 0,2 литра) Кол-во упаковок Длина  (а) 1 Ширина  (b)   Высота  (h)     S осн.      S бок.пов.      S полн.пов.     Таблица 2. Определение площади поверхности упаковки,  имеющей форму  правильного тетраэдра   (вместимость – 0,2 литра). Кол-во  упаковок Сторона  грани    (а) 1 S 1  (площадь одной грани  по ф-ле Герона)   S полн.пов.      

Задача экономического отдела

Таблица 1. Определение площади поверхности упаковки,

имеющей форму прямоугольного

параллелепипеда (вместимость – 0,2 литра)

Кол-во упаковок

Длина (а)

1

Ширина (b)

 

Высота (h)

 

 

S осн.

 

S бок.пов.

 

 

S полн.пов.

 

Таблица 2. Определение площади поверхности упаковки,

имеющей форму  правильного тетраэдра 

(вместимость – 0,2 литра).

Кол-во упаковок

Сторона грани   (а)

1

S 1 (площадь одной грани по ф-ле Герона)

 

S полн.пов.  

 

 

1). На заводе игрушек выпускают наборы кубиков. В набор входит по 10 кубиков красного, зеленого, синего и желтого цвета. Сколько пластмассы каждого цвета понадобиться для одного такого набора, если ребро кубика 10 см?

1). На заводе игрушек выпускают наборы кубиков. В набор входит по 10 кубиков красного, зеленого, синего и желтого цвета. Сколько пластмассы каждого цвета понадобиться для одного такого набора, если ребро кубика 10 см?

2). Коллекционер заказал аквариум, имеющий форму правильной шестиугольной призмы. Сколько квадратных метров стекла необходимо для изготовления аквариума, если сторона основания 0,5 м, а высота 1,2 м? Ответ округлите до сотых.

2). Коллекционер заказал аквариум, имеющий форму правильной шестиугольной призмы. Сколько квадратных метров стекла необходимо для изготовления аквариума, если сторона основания 0,5 м, а высота 1,2 м? Ответ округлите до сотых.

3). На даче нужно покрасить с внешней и внутренней стороны бак с крышкой для воды. Бак имеет форму прямой призмы высотой 1,5 м. В основании призмы лежит прямоугольный треугольник с катетами 0,6 м и 0,8 м. В магазине имеется краска в банках по 1 кг и 2,5 кг. Сколько и каких по массе банок краски надо купить для покраски бака, если на 1 квадратный метр расходуется 0,2 кг краски?

3). На даче нужно покрасить с внешней и внутренней стороны бак с крышкой для воды. Бак имеет форму прямой призмы высотой 1,5 м. В основании призмы лежит прямоугольный треугольник с катетами 0,6 м и 0,8 м. В магазине имеется краска в банках по 1 кг и 2,5 кг. Сколько и каких по массе банок краски надо купить для покраски бака, если на 1 квадратный метр расходуется 0,2 кг краски?

4). На заводе выпускают подарочные коробки в виде прямой призмы, в основании которой лежит ромб с диагоналями 24 см и 10 см. Площадь полной поверхности призмы равна 760 кв.см. Какой будет высота этой коробки?

4). На заводе выпускают подарочные коробки в виде прямой призмы, в основании которой лежит ромб с диагоналями 24 см и 10 см. Площадь полной поверхности призмы равна 760 кв.см. Какой будет высота этой коробки?

5). Необходимо изготовить короб с крышкой для хранения картофеля в форме прямой призмы высотой 0,7 м. В основании призмы лежит равнобедренная трапеция с основаниями 0,4 м и  0,6 м и боковой стороной 0,5 м. Сколько фанеры понадобиться для изготовления короба? Ответ округлите до целого числа.

5). Необходимо изготовить короб с крышкой для хранения картофеля в форме прямой призмы высотой 0,7 м. В основании призмы лежит равнобедренная трапеция с основаниями 0,4 м и 0,6 м и боковой стороной 0,5 м. Сколько фанеры понадобиться для изготовления короба? Ответ округлите до целого числа.

Итог урока  Закончите предложения:

Итог урока Закончите предложения:

  • – «Сегодня на уроке я понял (а), что мне необходимо…»
  • – «При решении задач с практическим содержанием необходимо…»
  • – «Самое трудное для меня…»
Домашнее задание Подобрать или придумать задачу с практическим содержанием по теме «Призма»

Домашнее задание

Подобрать или придумать задачу с практическим содержанием по теме «Призма»


Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 10 класс

Скачать
Конспект урока по геометрии для 10 класса по теме "Площадь поверхности призмы"

Автор: Хайржанова Ольга Николаевна

Дата: 14.11.2014

Номер свидетельства: 130617

Похожие файлы

object(ArrayObject)#864 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(79) "конспект урока  по геометрии по теме:"Конус""
    ["seo_title"] => string(47) "konspiekt-uroka-po-ghieomietrii-po-tiemie-konus"
    ["file_id"] => string(6) "274889"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1452457857"
  }
}
object(ArrayObject)#886 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(138) "Разработка урока по теме: "Цилиндр, его определение, элементы и их свойства" "
    ["seo_title"] => string(83) "razrabotka-uroka-po-tiemie-tsilindr-iegho-opriedielieniie-eliemienty-i-ikh-svoistva"
    ["file_id"] => string(6) "137825"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1417438466"
  }
}
object(ArrayObject)#864 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(205) "План – конспект  открытого интегрированного урока- конференции, практикума по геометрии на 2 курсе в группе № 15 "
    ["seo_title"] => string(119) "plan-konspiekt-otkrytogho-intieghrirovannogho-uroka-konfierientsii-praktikuma-po-ghieomietrii-na-2-kursie-v-ghruppie-15"
    ["file_id"] => string(6) "229515"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1441767341"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства