kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Блок уроков по теме «Решение квадратных неравенств» для учащихся 8 классов.

Нажмите, чтобы узнать подробности

Автор Майер Д.Р.

На уроках повторяются  алгоритмы построения параболы, правила решения квадратных уравнений;; формируется  умение решать различные неравенства.

Вводится  понятие квадратного неравенства, объясняется правило решения квадратных неравенств,алгоритм решения квадратного неравенства. На конкретном примере учащимся предлагается один из  способов  решения квадратных неравенств – метод интервалов:

Закрепляется  умение решать квадратные неравенства; рассматриваются  решение различных заданий, с использованием квадратных неравенств; Есть подборка заданий для проверки  умение учеников решать неравенства.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Блок уроков по теме «Решение квадратных неравенств» для учащихся 8 классов.»

Блок уроков по теме «Решение квадратных неравенств»

для учащихся 8 классов.

Автор Майер Д.Р.

На уроках повторяются алгоритмы построения параболы, правила решения квадратных уравнений;; формируется умение решать различные неравенства.

Вводится понятие квадратного неравенства, объясняется правило решения квадратных неравенств ,алгоритм решения квадратного неравенства. На конкретном примере учащимся предлагается один из способов решения квадратных неравенств – метод интервалов:

Закрепляется умение решать квадратные неравенства; рассматриваются решение различных заданий, с использованием квадратных неравенств; Есть подборка заданий для проверки умение учеников решать неравенства.

Решение квадратных неравенств

У р о к 1

Цели: повторить алгоритмы построения параболы, правила решения квадратных уравнений; объяснить правило решения квадратных неравенств; формировать умение решать различные неравенства.

Ход урока

I. Организационный момент.

II. Повторение пройденного материала

Работа по решению линейных неравенств.

6x 72

3x

–7x ≥ 49;

–11x

4x – 6 6x + 14;

13 – 5xx – 5;

7x + 1 x;

5 – 8x x;

5 – 2x ≤ 1 – (x – 2);

3 – x ≤ 1 – 7(x + 1);

6 – 6(x – 3) ≥ 2(x + 1) – 10;

x – 5(x – 4) 6x + 20.

III. Актуализация знаний.

Учащиеся должны вспомнить правила построения параболы и правила решения квадратных уравнений. Для этого на доске разбирается построение графиков следующих функций:

а) y = x2 – 4x + 3;

б) y = –x2 + 2x + 3.

Находятся точки пересечения данных графиков с осью абсцисс.

IV. Объяснение нового материала.

Вывожу понятие квадратного неравенства, алгоритм решения квадратного неравенства.

Для лучшего закрепления материала можно приготовить плакат с алгоритмом решения квадратного неравенства.

Рассмотреть решение неравенства по данному алгоритму:

x2 + 6x – 16 0

1) Найдем дискриминант трехчлена

x2 + 6x – 16

D = b2 – 4ac,

D = 36 – 4  (–16) = 100 0

Следовательно, имеется два действительных корня трехчлена.

2) Найдем корни этого трехчлена, решив уравнение.

x2 + 6x – 16 = 0

x1 = –8, x2 = 2.

3) Построим схематический график функции y = x2 + 6x + 16.

4) О т в е т: x (–∞; –8)(2; +∞).

V. Закрепление нового материала.

1) Рассмотреть решение неравенств № 34.1; 34.2; 34.3; 34.8.

2) Рассмотреть решения неравенств № 34.11; 34.12.

3) Сильным учащимся можно предложить задания типа:

Для каждого a решите неравенство:

а) (x – 3)2 a; б) (3 – 4x)2a – 1; в) |xa|(x – 3)

г) (xa)2(x – 7) ≥ 0; д) (xa)|x – 5| ≤ 0.

Р е ш е н и е:

б) (3 – 4x)2a – 1;

9 – 24x + 16x2a – 1;

16x2 – 24x + 10 – a ≤ 0;

16x2 – 24x + 10 – a = 0;

a = 16, b = –24, c = 10 – a;

D = b2 – 4ac = 576 – 640 + 64a = 64(a – 1);

1. При a = 1 D = 0;

– единственное решение при условии a = 1.

2. При a D

При заданном значении a

3. При a 1 D 0;

VI. Подведение итогов.

Домашнее задание: прочитать материал параграфа 34, выучить алгоритм решения квадратных неравенств. Решить задачи № 34.5; 34.6; 34.10.

У р о к 2

Цели: рассмотреть решение квадратных неравенств различного уровня сложности; развивать умение решать неравенства разными способами.

Ход урока

I. Организационный момент.

II. Индивидуальная работа.

К доске вызываются четыре ученика для самостоятельного решения неравенств с карточек:

Карточка 1

x2 – 2x – 35 0

Карточка 2

x2 – 5x + 9

Карточка 3

x2 + 6x – 5 ≥ 0

Карточка 4

x2 – 10x + 25 ≤ 0

III. Актуализация знаний.

Во время индивидуальной работы остальные учащиеся класса самостоятельно выполняют № 34.9.

IV. Решение задач.

1) На конкретном примере учащимся предлагается еще один способ решения квадратных неравенств – метод интервалов:

–2x2 + 3x + 9

2x2 – 3x – 9 0

Разложим квадратный трехчлен 2x2 – 3x – 9 на множители. Корнями трехчлена являются числа x1 = –1,5; x2 = 3.

2x2 – 3x – 9 = 2(x + 1,5)(x – 3).

Отметим на числовой прямой корни трехчлена

Определим знаки произведения 2(x + 1,5)(x – 3) на каждом из этих промежутков.

при x x + 1,5x – 3 x + 1,5)(x – 3) 0;

при –1,5 x x + 1,5)(x – 3)

при x 3 (x + 1,5)(x – 3) 0.

Квадратный трехчлен принимает положительное значение для любого x (–∞; –1,5)(3, +∞).

2) Рассмотреть решение неполных квадратных неравенств № 34.16; 34.18.

3) Решить неравенства № 34.20; 34.21 (б); 34.22 (б); 34.31; 34.32.

V. Обучающая самостоятельная работа.

Вариант 1

Вариант 2

Решите неравенства:

а) 9x2 ≤ –25 – 30x;

б) –x2 16;

в) 3x2x

г) –x2 – 4 ≤ 4x;

д) x2 – 2x –1;

е) 6x2 ≥ 15 – x.

а) x2 ≥ –12x – 36;

б) 7x2 + 12x

в) 4xx2

г) 6x2 – 4 ≥ 0;

д) –10x2 17x;

е) 9x2 – 24x ≤ –16.

Ответы данной самостоятельной работы проверяется на уроке. Неравенства, которые вызвали затруднения, разбираются на доске. Оценки выставляются выборочно.

VI. Подведение итогов.

Домашнее задание: решить задачи № 34.15; 34.19; 34.21(а); 34.30.

У р о к 3

Цели: закрепить умение решать квадратные неравенства; рассмотреть решение различных заданий, с использованием квадратных неравенств; проверить умение учеников решать неравенства.

Ход урока

I. Организационный момент.

II. Индивидуальная работа.

Вызывается четыре ученика для самостоятельного выполнения заданий с карточек.

Карточка 1

Решите неравенство:

x2 – 100 ≤ 0

Карточка 2

Решите неравенство:

Карточка 3

Найдите наибольшее целочисленное решение неравенства:

–7x2 – 12x – 5 0

Карточка 4

Найдите наименьшее целочисленное решение неравенства:

x2 + 3x + 2 ≥ 0

III. Актуализация знаний.

В момент выполнения индивидуальной работы остальные ученики самостоятельно выполняют задания № 34.28.

IV. Решение задач.

1) Рассмотреть решение различных заданий, с использованием неравенств № 34.23; 34.24; 34.33; 34.34; 34.36; 34.39; 34.44.

Сильным ученикам предлагается решить задачу № 34.46.

2) При каком наименьшем целом значении k уравнение 4y2 – 3y + k = 0 не имеет действительных корней?

3) Найдите область определения функций:

а) б) в)

V. Самостоятельная работа.

Вариант 1

Вариант 2

1) Решить неравенства:

а) 17x – 6x2

б) 0,5x2 – 12 ≤ 0;

в) 4x2 + 1 ≤ –4x;

г) 3x2 – 4x

а) 20 x2;

б) 20x – 25x2

в) x – 3x2 ≥ –24;

г) –3x2 ≥ 4x.

2) При каких значениях параметра a квадратное уравнение x2 + ax + a – 1 = 0 имеет два различных корня?

2) При каких значениях параметра a квадратное уравнение x2axa – 1 = 0 не имеет корней?

О т в е т ы:

В а р и а н т 1

1 (а)

1 (б)

1 (в)

1 (г)

–0,5

2) Чтобы уравнение x2 + ax + a – 1 = 0 имело два корня, необходимо условие

В а р и а н т 2

1 (а)

1 (б)

1 (в)

1 (г)

2) Не существует таких значений параметра a, при которых уравнение x2axa – – 1 = 0 не имело бы корней.

VI. Подведение итогов.

Домашнее задание: решить задачи № 34.26; 34.37; 34.40; 34.45.




На уроках повторяются алгоритмы построения параболы, правила решения квадратных уравнений;; формируется умение решать различные неравенства.

Вводится понятие квадратного неравенства, объясняется правило решения квадратных неравенств ,алгоритм решения квадратного неравенства. На конкретном примере учащимся предлагается один из способов решения квадратных неравенств – метод интервалов:

Закрепляется умение решать квадратные неравенства; рассматриваются решение различных заданий, с использованием квадратных неравенств; Есть подборка заданий для проверки умение учеников решать неравенства.



Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 8 класс

Скачать
Блок уроков по теме «Решение квадратных неравенств» для учащихся 8 классов.

Автор: Майер Динария Ринатовна

Дата: 28.03.2016

Номер свидетельства: 311107

Похожие файлы

object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(118) "Подготовка к итоговой аттестации по математике (из опыта работы)"
    ["seo_title"] => string(63) "podgotovka_k_itogovoi_attestatsii_po_matematike_iz_opyta_raboty"
    ["file_id"] => string(6) "625780"
    ["category_seo"] => string(7) "algebra"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1676480814"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(125) "Программа спецкурса по математике " Математика абитуриенту",11 класс "
    ["seo_title"] => string(72) "proghramma-spietskursa-po-matiematikie-matiematika-abituriientu-11-klass"
    ["file_id"] => string(6) "118819"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1413266581"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(150) "КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ   УРОКОВ АЛГЕБРЫ   9 кл НА 2014 – 2015УЧЕБНЫЙ ГОД "
    ["seo_title"] => string(89) "kaliendarno-tiematichieskoie-planirovaniie-urokov-algiebry-9-kl-na-2014-2015uchiebnyi-god"
    ["file_id"] => string(6) "154958"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1421230196"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1850 руб.
2640 руб.
1650 руб.
2350 руб.
1310 руб.
1870 руб.
1390 руб.
1980 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства