Тест «Логарифмические уравнения и неравенства»
1 вариант
1. Найдите произведение корней уравнения: logπ (x2 + 0,1) = 0 1) - 1,21; 2) - 0,9; 3) 0,81; 4) 1,21.
2. Укажите промежуток, которому принадлежат корни уравнения log0,5(x – 9 ) = 1 + log0,5 5 1) ( 11; 13 ); 2) ( 9; 11 ); 3) ( -12; -10 ); 4) [ -10; -9 ].
3. Укажите промежуток, которому принадлежит корень уравнения log4 (4 – х ) + log4x = 1 1) ( -3; -1 ); 2) ( 0; 2 ); 3) [ 2; 3 ]; 4) [ 4; 8 ].
4. Найдите сумму корней уравнения log√3 x2= log√3 ( 9x – 20 ) 1) - 13; 2) - 5; 3) 5; 4) 9.
5. Укажите промежуток, которому принадлежит корень уравнения log1/3 (2х – 3 )5= 15 1) [ -3; 2 ); 2) [ 2; 5 ); 3) [ 5; 8 ); 4) [ 8; 11 ).
6. . Укажите промежуток, которому принадлежит корень уравнения lg ( х + 7 ) – lg ( х + 5 ) = 1 1) ( -∞; -7 ); 2) ( -7; -5 ); 3) ( -5; -3 ); 4) ( 0; +∞).
7. Решите неравенство log3( 4 – 2х ) 1 1) ( -∞; 0,5), 2) ( -∞; 2 ), 3) ( 2; + ∞ ); 4) (0,5; 5)
2 вариант
1.Найдите произведение корней уравнения: lg (x2 + 1) = 1 1) - 99; 2) - 9; 3) 33; 4) -33.
2. Укажите промежуток, которому принадлежит корень уравнения log4 (x – 5 ) = log25 5 1) ( -4; -2 ); 2) ( 6; 8 ); 3) ( 3; 6 ); 4) [ -8; -6 ].
3. Укажите промежуток, которому принадлежит корень уравнения lоg0,4 (5 – 2х ) - lоg0,4 2 = 1 1) ( -∞; -2 ); 2) [ -2; 1 ]; 3) [ 1; 2 ]; 4) ( 2; +∞).
4. Найдите сумму корней уравнения lg (4x – 3 ) = 2 lg x 1) - 2; 2) 4; 3) -4; 4) 2.
5. Укажите промежуток, которому принадлежит корень уравнения log2 (64х² ) = 6 1) [ 5; 7]; 2) [ 9; 11 ]; 3) ( 3; 5 ); 4) [ 1; 3 ].
6. . Укажите промежуток, которому принадлежит корень уравнения lоg2 ( х - 1 )³ = 6 log2 3 1) [ 0; 5 ); 2) [ 5; 8 ); 3) [ 8; 11 ); 4) [ 11; 14 ).
7. Решите неравенство log0,8 ( 0,25 – 0,1х ) -1 1) ( -∞; 2,5 ); 2) ( -10; 2,5); 3) ( 2,5; + ∞); 4) ( -10; +3)
Ключ | А1 | А2 | А3 | А4 | А5 | А6 | А7 |
| | | 1вариант | 2 | 1 | 3 | 4 | 1 | 3 | 1 |
|
|
| 2 вариант | 2 | 2 | 4 | 2 | 4 | 3 | 2 |
|
|
| |