Введение
Математика – самая древняя наука, живущая и развивающаяся вместе с человечеством. Она появилась из насущных нужд человека, когда возникла потребность в количественном отображении окружающего его мира.
Статус самостоятельной науки математика приобрела в Древней Греции примерно в VI в. До н. э. Все философские школы того времени включали математику в круг вопросов миросозерцания; строгий язык формальной логики (именно он стал языком математики ) формировал уровень и строй мышления. В III в. до н. э. математика выделилась из философии, что отражено в « Началах » - эпохальном труде, прославившем в веках имя Евклида и заложившей фундамент классической геометрии. Более двух тысяч лет математику изучали по этой книге
XVII в. стал эпохой бурного развития математики. Труды Декарта, Ньютона и Лейбница ознаменовали новый этап ее эволюции появление математики переменных величин. Начинается период дифференциации единой науки на ряд самостоятельных математических наук: алгебру, математический анализ, аналитическую геометрию.
Современная математика характеризуется интенсивным проникновением в другие науки, во многом этот процесс происходит благодаря разделению математики на ряд самостоятельных областей. Язык математики оказался универсальным, и это есть объективное отражение универсальности законов окружающего нас многообразного мира.
Экономика, как наука об объективных причинах функционирования и развития общества, еще со времен Луки Пачоли (основателя бухгалтерского дела в XV в.) и Адама Смита пользуется разнообразными количественными характеристиками, а потому вобрала в себя большое число математических методов. Современная экономика использует практически весь аппарат прикладной математики.
Современная концепция среднего и высшего образования достаточно полно реализует специфику изучения математических дисциплин. Цикл математических дисциплин для различных специальностей согласно Государственному стандарту высшего и среднего профессионального образования состоит из ряда взаимосвязанных разделов с иллюстрацией их применения в экономике. К ним относятся математический анализ, линейная алгебра, теории комплексных чисел и ее приложения в задачах оптимизации, обыкновенные дифференциальные уравнения, теория вероятностей и математическая статистика. Именно эти разделы и их приложения вошли в настоящее учебное пособие.
В изложении материала доказательная база практически отсутствует: основное внимание уделено приобретению навыков использования математического аппарата. Все разделы пособия содержат подборку упражнений для самостоятельного выполнения. Кроме того, в книге имеется практикум с разделами по каждой теме.
В пособие вошли материалы, прошедшие проверку при преподавании дисциплины математика в колледже для различных форм обучения.
При изложении материала используется как сложившаяся терминология, так и традиционные обозначения в формулировках задач и математических моделей и решения.
Предлагаемое учебное пособие рассчитано на самую широкую аудиторию – студентов различных специальностей в колледже. Он может быть использован в различных формах обучения по программам среднего специального образования: очной, заочной, а также для студентов, имеющих «свободное» посещение, при написании курсовых и дипломных работ.