Данный реферат включает в себя подробную информацию о числе Пи. Реферат даёт ответы на вопросы, что такое число ПИ? Как и когда появилось это число в математике вообще и когда им стали пользоваться в нашей стране. В данной работе широко развёрнута информация, как пользоваться данным числом. Реферат написан понятным языком и бедет доступен как учащимся, так и учителям.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Реферат на тему "Число Пи" »
МБУ СОШ№48
г.Нижнеудинск
Реферат
«Число p»
Автор Юрченко Татьяна
ученица 9 класса
МБУ СОШ№48
г.Нижнеудинск
руководитель
Шаповалова Римма Ивановна
учитель математики
2014год
Содержание:
-Цель работы
-Задачи работы
-Первое знакомство с числом p
-Возникновение числа p
-Примеры возникновения числа p (пример №1, пример №2, пример №3)
-Запись числа p
-Мнемоническое правило
-Забавные факты (2 части)
Математика пронизывает все науки без исключения, и каждый из нас должен быть в ней более или менее компетентен. В математике есть удивительное и загадочное число. Это число p
Цель работы:
Исследование числа p и выявление его роли в окружающей среде
Задачи работы
Повысить математическую культуру
Уметь обрабатывать информацию
Развить умение анализировать и делать выводы
Научиться кратко излагать свои мысли
Первое знакомство с числом p
В школьном курсе математики с числом p мы впервые встречаемся в 6 классе в теме: «Длина окружности и площадь круга». В учебнике мы сталкиваемся со следующим объяснением: «Длина окружности прямо пропорциональна длине её диаметра. Поэтому для всех окружностей отношение длины окружности к длине её диаметра является одним и тем же числом. Его обозначают греческой буквой p («читается «пи»»). Длина окружности: C=2pr; площадь круга S=pr2 ».
Потом, только в старших классах мы опять встречаемся с числом p, но уже в курсе геометрии пытаются доказать длину окружности следующим образом. «Периметр любого правильного вписанного в окружность многоугольника является приближённым значением длины окружности. Чем больше число сторон такого многоугольника, тем точнее это приближённое значение, так как многоугольник при увеличении числа сторон всё ближе и ближе «прилегает» к окружности
Возникновение числа p
Более двух тысячелетий назад было подмечено, что все окружности длиннее своих диаметров в одно и то же число раз. Впоследствии это было доказано.
Отношение длины окружности к её диаметру лет 250 назад стали обозначать кратко одной буквой p. Эта греческая буква – первая буква греческого слова «периферия», что означает «окружность». В древнем Вавилоне считали, что окружность длиннее её диаметра в три раза (т.е. p приблизительно равно трём). Но древнегреческие геометры уже знали, что p не равно трём. Об этом мы знаем из школьного курса геометрии. Почему же тогда Бертран Рассел в своей книге «Кошмары выдающихся личностей» писал: «лицо p было скрыто маской. Все понимали, что сорвать её, оставшись при этом в живых, не сможет никто. Сквозь прорези маски пронзительно, безжалостно, холодно и загадочно смотрели глаза …».
Английский математик Август де Морган назвал как-то p «…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу».
Число p связывают с окружностью. Однако это число появляется в различных математических результатах, в которых ни о какой окружности речи не идёт.
Примеры возникновения числа p
Пример №1
Рассмотрим множество положительных чисел. Если у них случайным образом выбрать два числа, то какова вероятность того, что выбранные числа не будут иметь общего делителя? Ответ неожидан: искомая вероятность равна 6/ p в квадрате.
Пример №2
Когда-то немецкий математик Лейбниц (1646-1716) заинтересовался, сколько получится в пределе, если последовательно будем складывать такие числа:1-1/3+1/5-1/7+1/9-1/11+... Оказалось, что в пределе мы получим p /4. (Для доказательства Лейбниц пользовался приёмами высшей математики).
Пример №3
Было найдено и много других формул, где неожиданно появляется число p. Вот формула английского математика Джона Валлиса:
Если подсчитать количество букв в каждом слове в нижеприведенных фраза
х ( без учета знаков препинания) и записать эти цифры подряд, не забывая про десятичную запятую после первой цифры «3». Получится приближенное число p
Забавные факты
Международный день числа p
14 марта человечество отмечает Международный день числа p. Почему 14 марта? Если быть точнее, то поздравлять окружающих с днем «пи» нужно в марте 14-го в 1:59:26, в соответствии с цифрами числа p – 3,1415926…
Интересно, что праздник числа p, отмечающийся 14 марта, совпадает с днем рождения одного из наиболее выдающихся физиков современности Альбертом Эйнштейном.
Еще одной датой, связанной с числом p, является 22 июля, которою называют «Днем приближенного числа p», так как в европейском формате дат этот день записывается как 22/7. а значение этой дроби является приближенным значением числа p
Мировой рекорд по запоминанию знаков числа пи принадлежит японцу Акира Харагути. Он запомнил число p до 100- тысячного знака после запятой. Ему понадобилось почти 16 часов, чтобы назвать всё число целиком.
В штате Индиана ( США) в 1897 был выпушен билль, законодательно устанавливающий значение числа p равным 3,2. Данный билль не стал законом благодаря своевременному вмешательству профессора Университета Пердью,присутствовавшем во время рассмотрения принятого данного закона.
Список литературы
1 Стройк Д.Я. Краткий очерк истории математики. Перевод с немецкого и дополнения И.Б. Погребысского - М.: «Наука» Главная редакция физико-математической литературы 2012г
2. Глейзер. Г.И. история математики в средней школе / Г.И. Глейзер. – М.: Просвещение, 2011г.
3. Виленкин Н.Я. Математика: Учеб. Для 6 кл. общеобразоват. Учреждений / Н.Я Виленкин, В.И. Жохов, А.С Чесноков, С.И Шварцбурд.- 15-е изд. Перераб. – М.:
Мнемозина, 2012.
4. Атанасян Л.С. Геометрии: Учеб. Для 7-9 кл. общеобразоват. Учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 13-е изд. – М.: росвещение, 2014.
5. Математика в школе, журнал, 2010г год.
6. Мантуров О.В. Толковый словарь математических терминов: Пособие для учителей / О.В.Мантуров, Ю.К.Солнцев, Ю.И.Соркин, Н.Г.Федин. – М.: Просвещение, 2013г