kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Презентация "Арифметическая прогрессия"

Нажмите, чтобы узнать подробности

?Термин «прогрессия» имеет латинское происхождение (progression), что означает «движение вперед» и был введен римским автором Боэцием (VI в.).

? Этим термином в математике прежде именовали всякую последовательность чисел, построенную по такому закону, который позволяет неограниченно продолжать эту последовательность в одном направлении. В настоящее время термин «прогрессия» в первоначально широком смысле не употребляется.

? Два важных частных вида прогрессий – арифметическая и геом?Термин «прогрессия» имеет латинское происхождение (progression), что означает «движение вперед» и был введен римским автором Боэцием (VI в.).

? Этим термином в математике прежде именовали всякую последовательность чисел, построенную по такому закону, который позволяет неограниченно продолжать эту последовательность в одном направлении. В настоящее время термин «прогрессия» в первоначально широком смысле не употребляется.

? Два важных частных вида прогрессий – арифметическая и геометрическая – сохранили свои названия.етрическая – сохранили свои названия.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Презентация "Арифметическая прогрессия"»

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ

Устная работа О последовательности (а n ) известно, что а 1 =2 , а n+1 =3 а n +1 .  Как называется такой способ задания последовательности?  Найдите первые четыре члена этой последовательности. Рекуррентный способ. а 1 = 2 а 2 =3 а 1 + 1=7 а 3 =3 а 2 +1 =22 а 4 =3 а 3 +1 =67

Устная работа

  • О последовательности (а n ) известно, что а 1 =2 , а n+1 =3 а n +1 .
  • Как называется такой способ задания последовательности?
  • Найдите первые четыре члена этой последовательности.

Рекуррентный способ.

а 1 = 2

а 2 =3 а 1 + 1=7

а 3 =3 а 2 +1 =22

а 4 =3 а 3 +1 =67

Что такое ПРОГРЕССИЯ? Термин «прогрессия» имеет латинское происхождение (progression), что означает «движение вперед» и был введен римским автором Боэцием (VI в.).  Этим термином в математике прежде именовали всякую последовательность чисел, построенную по такому закону, который позволяет неограниченно продолжать эту последовательность в одном направлении. В настоящее время термин «прогрессия» в первоначально широком смысле не употребляется.  Два важных частных вида прогрессий – арифметическая и геометрическая – сохранили свои названия.

Что такое ПРОГРЕССИЯ?

  • Термин «прогрессия» имеет латинское происхождение (progression), что означает «движение вперед» и был введен римским автором Боэцием (VI в.).
  • Этим термином в математике прежде именовали всякую последовательность чисел, построенную по такому закону, который позволяет неограниченно продолжать эту последовательность в одном направлении. В настоящее время термин «прогрессия» в первоначально широком смысле не употребляется.
  • Два важных частных вида прогрессий – арифметическая и геометрическая – сохранили свои названия.
БОЭЦИЙ Ани́ций Ма́нлий Торква́т Севери́н Боэ́ций , в исторических документах Ани́ций Ма́нлий Севери́н (ок.480 — 524 ( 526) ), один  из наиболее авторитетных государственных деятелей своего времени, знаток  и ценитель греческой и римской античности, философ-неоплатоник, теоретик музыки, христианский теолог . Помимо богословских трудов в трактатах по дисциплинам квадривия — арифметике («De institutione arithmetica») и музыке («De institutione musica») — передал европейской цивилизации метод и базовые знания лучших греческих авторов (преимущественно пифагорейцев) в области «математических» наук. Боэций (слева) на фреске Рафаэля «Афинская школа»

БОЭЦИЙ

  • Ани́ций Ма́нлий Торква́т Севери́н Боэ́ций , в исторических документах Ани́ций Ма́нлий Севери́н (ок.480 — 524 ( 526) ), один из наиболее авторитетных государственных деятелей своего времени, знаток и ценитель греческой и римской античности, философ-неоплатоник, теоретик музыки, христианский теолог .
  • Помимо богословских трудов в трактатах по дисциплинам квадривия — арифметике («De institutione arithmetica») и музыке («De institutione musica») — передал европейской цивилизации метод и базовые знания лучших греческих авторов (преимущественно пифагорейцев) в области «математических» наук.

Боэций (слева) на фреске Рафаэля «Афинская школа»

Что общего в последовательностях? 22, 26 2, 6, 10, 14, 18, ….  11, 8, 5, 2, -1, ….  5, 5, 5, 5, 5, ….   -4, -7 5, 5

Что общего в последовательностях?

22, 26

  • 2, 6, 10, 14, 18, ….
  • 11, 8, 5, 2, -1, ….
  • 5, 5, 5, 5, 5, ….

-4, -7

5, 5

Арифметическая прогрессия Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.   ( a n ) - арифметическая прогрессия,   если a n+1 = a n +d ,   где d -некоторое число.

Арифметическая прогрессия

  • Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.

( a n ) - арифметическая прогрессия,

если a n+1 = a n +d ,

где d -некоторое число.

Разность арифметической прогрессии Число d , показывающее, на сколько следующий член последовательности отличается от предыдущего, называется разностью прогрессии.    d=a n+1 -a n  a n+1 a n a n-1 a 3 a 1 a 2 + d + d + d + d + d + d + d

Разность арифметической прогрессии

  • Число d , показывающее, на сколько следующий член последовательности отличается от предыдущего, называется разностью прогрессии.

d=a n+1 -a n

a n+1

a n

a n-1

a 3

a 1

a 2

+ d

+ d

+ d

+ d

+ d

+ d

+ d

a n 2, 6, 10, 14, 18, …. 11, 8, 5, 2, -1, …. 5, 5, 5, 5, 5, …. d =-3, a n+1 n d =0, a n+1 =a n Если в арифметической прогрессии разность положительна (d0) , то прогрессия является возрастающей . Если в арифметической прогрессии разность отрицательна ( dВ случае , если разность равна нулю ( d=0 ) и все члены прогрессии равны одному и тому же числу, последовательность называется стационарной . " width="640"

Свойства прогрессии

d =4, a n+1 a n

  • 2, 6, 10, 14, 18, ….
  • 11, 8, 5, 2, -1, ….
  • 5, 5, 5, 5, 5, ….

d =-3, a n+1 n

d =0, a n+1 =a n

  • Если в арифметической прогрессии разность положительна (d0) , то прогрессия является возрастающей .
  • Если в арифметической прогрессии разность отрицательна ( d
  • В случае , если разность равна нулю ( d=0 ) и все члены прогрессии равны одному и тому же числу, последовательность называется стационарной .
Задача На складе 1 числа было 50 тонн угля. Каждый день в течение месяца на склад приходит машина с 3 тоннами угля. Сколько угля будет на складе 30 числа, если в течение этого времени уголь со склада не расходовался.  a 1 =50, d =3 1 числа: 50 т  2 числа: +1 машина (+3 т)  3 числа: +2 машины(+3·2 т) ………………………………………  30 числа:+29 машин(+3·29 т) a 30 =a 1 +29 d  a 30 =137

Задача

  • На складе 1 числа было 50 тонн угля. Каждый день в течение месяца на склад приходит машина с 3 тоннами угля. Сколько угля будет на складе 30 числа, если в течение этого времени уголь со склада не расходовался.
  • a 1 =50, d =3
  • 1 числа: 50 т

2 числа: +1 машина (+3 т)

3 числа: +2 машины(+3·2 т)

………………………………………

30 числа:+29 машин(+3·29 т)

  • a 30 =a 1 +29 d

a 30 =137

Формула n -ого члена a 1  a 2 =a 1 +d  a 3 =a 2 +d=a 1 +2d  a 4 =a 3 +d=a 1 +3d …………………… ..  a n =a n-1 +d=a 1 +(n-1)d  a n =a 1 +d (n-1)

Формула n -ого члена

  • a 1

a 2 =a 1 +d

a 3 =a 2 +d=a 1 +2d

a 4 =a 3 +d=a 1 +3d

…………………… ..

a n =a n-1 +d=a 1 +(n-1)d

a n =a 1 +d (n-1)

Пример 1. Последовательность ( а n )-арифметическая прогрессия. Найдите а 81 ,  если а 1 =20 и  d =3 .  Решение:  Воспользуемся формулой n-ого члена  а 81 =а 1 + d (81-1),   а 81 =20+3 ·80,  а 81 =2 60. Ответ: 260.

Пример 1.

  • Последовательность ( а n )-арифметическая прогрессия. Найдите а 81 , если а 1 =20 и d =3 .
  • Решение:

Воспользуемся формулой n-ого члена

а 81 1 + d (81-1),

а 81 =20+3 ·80,

а 81 =2 60.

  • Ответ: 260.
Характеристическое свойство арифметической прогрессии Пусть a n – искомый член последовательности. Воспользуемся тем, что разность между соседними членами последовательности постоянна: a n -a n-1 =a n+1 -a n ,  2 a n =a n-1 +a n+1 ,  a n =( a n-1 +a n+1 ):2 Числовая последовательность является арифметической прогрессией тогда и только тогда, когда любой член этой последовательности, начиная со второго, есть среднее арифметическое соседних с ним членов!

Характеристическое свойство арифметической прогрессии

  • Пусть a n – искомый член последовательности. Воспользуемся тем, что разность между соседними членами последовательности постоянна:
  • a n -a n-1 =a n+1 -a n ,

2 a n =a n-1 +a n+1 ,

a n =( a n-1 +a n+1 ):2

  • Числовая последовательность является арифметической прогрессией тогда и только тогда, когда любой член этой последовательности, начиная со второго, есть среднее арифметическое соседних с ним членов!

Задача Последовательность ( а n )- арифметическая прогрессия. Найдите а 21 , если а 1 =5,8 и  d =-1,5.   Решение:  Воспользуемся формулой n-ого члена  а 2 1 =а 1 + d ( 2 1-1),   а 21 =5,8+(-1,5) · 2 0,  а 21 =-24,2 . Ответ: -24,2 .

Задача

  • Последовательность ( а n )- арифметическая прогрессия. Найдите а 21 , если а 1 =5,8 и d =-1,5.
  • Решение:

Воспользуемся формулой n-ого члена

а 2 1 1 + d ( 2 1-1),

а 21 =5,8+(-1,5) · 2 0,

а 21 =-24,2 .

  • Ответ: -24,2 .
Интересный факт Любая арифметическая прогрессия может быть задана формулой a n =kn+b, где k  и b – некоторые числа.  a n =a 1 +d(n-1)=dn+(a 1 -d)  Последовательность( a n ), заданная формулой вида  a n =kn+b, где k  и b – некоторые числа, является арифметической прогрессией.  a n+1 -a n =k(n+1)+b-(kn+b)=kn+k+b+kn-b=k

Интересный факт

  • Любая арифметическая прогрессия может быть задана формулой a n =kn+b, где k и b – некоторые числа.

a n =a 1 +d(n-1)=dn+(a 1 -d)

  • Последовательность( a n ), заданная формулой вида

a n =kn+b, где k и b – некоторые числа, является арифметической прогрессией.

a n+1 -a n =k(n+1)+b-(kn+b)=kn+k+b+kn-b=k

Основные формулы: Рекуррентный способ задания арифметической прогрессии  a n+1 =a n +d Разность прогрессии d=a n+1 -a n Формула n -ого члена a n =a 1 +d(n-1)  Характеристическое свойство

Основные формулы:

  • Рекуррентный способ задания арифметической прогрессии a n+1 =a n +d
  • Разность прогрессии d=a n+1 -a n
  • Формула n -ого члена a n =a 1 +d(n-1)
  • Характеристическое свойство


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 9 класс

Скачать
Презентация "Арифметическая прогрессия"

Автор: Заболотнева Мария Петровна

Дата: 06.09.2016

Номер свидетельства: 342497

Похожие файлы

object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(173) "Презентация на тему: "Арифметическая прогрессия.Формула n-го члена арифметической прогрессии" "
    ["seo_title"] => string(110) "priezientatsiia-na-tiemu-arifmietichieskaia-proghriessiia-formula-n-gho-chliena-arifmietichieskoi-proghriessii"
    ["file_id"] => string(6) "137500"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1417361273"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(194) "Конспект урока с презентацией "Арифметическая прогрессия. Формула n-ого члена арифметической прогрессии" "
    ["seo_title"] => string(121) "konspiekt-uroka-s-priezientatsiiei-arifmietichieskaia-proghriessiia-formula-n-ogho-chliena-arifmietichieskoi-proghriessii"
    ["file_id"] => string(6) "181776"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1425395051"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(75) "презентация "Арифметическая прогрессия" "
    ["seo_title"] => string(48) "priezientatsiia-arifmietichieskaia-proghriessiia"
    ["file_id"] => string(6) "165551"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1422813636"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(58) "Арифметическая прогрессия. ОГЭ."
    ["seo_title"] => string(34) "arifmietichieskaiaproghriessiiaoge"
    ["file_id"] => string(6) "288194"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1454596341"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(95) "Конспект урока по теме: "Арифметическая прогрессия" "
    ["seo_title"] => string(60) "konspiekt-uroka-po-tiemie-arifmietichieskaia-proghriessiia-1"
    ["file_id"] => string(6) "142284"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1418246186"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1750 руб.
2500 руб.
1360 руб.
1940 руб.
1750 руб.
2500 руб.
1750 руб.
2500 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства