Просмотр содержимого документа
«Рабочая программа по математике 11 класс (ФГОС)»
Рабочая программа
по математике (включая алгебру и начала математического анализа, геометрию) для 11 класса
(5 часов в неделю. 170 часов в год. Срок реализации 1 год).
2018 год
Планируемые результатыосвоения учебного предмета
Личностные результаты
у учащихся будут сформированы:
ответственное отношение к учению;
готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, сознательному отношению к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
начальные навыки адаптации в динамично изменяющемся мире;
экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;
способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
умение контролировать процесс и результат учебной математической деятельности;
навыки сотрудничества в процессе учебной, учебно-исследовательской, общественной деятельности.
способность и готовность вести диалог с другими людьми в процессе совместной деятельности.
исследовательские умения, необходимые в освоении будущих творческих профессий;
у учащихся могут быть сформированы:
первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
креативность мышления, инициативы, находчивости, активности при решении арифметических задач.
Метапредметные:
регулятивные
учащиеся научатся:
формулировать и удерживать учебную задачу;
выбирать действия в соответствии с поставленной задачей и условиями реализации;
планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
предвидеть уровень усвоения знаний, его временных характеристик;
составлять план и последовательность действий;
осуществлять контроль по образцу и вносить необходимые коррективы;
адекватно оценивать правильность или ошибочность выполнения учебнойзадачи, её объективную трудность и собственные возможности её решения;
сличать способ действия и его результат с заданным эталоном с целью обнаруженияотклонений и отличий от эталона;
учащиеся получат возможность научиться:
определять последовательность промежуточных целей и соответствующихим действий с учётом конечного результата;
предвидеть возможности получения конкретного результата при решении задач;
осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;
выделять и формулировать то, что усвоено и что нужно усвоить, определять качество и уровень усвоения;
концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;
познавательные
учащиеся научатся:
самостоятельно выделять и формулировать познавательную цель;
использовать общие приёмы решения задач;
применять правила и пользоваться инструкциями и освоенными закономерностями;
осуществлять смысловое чтение;
моделировать явления и процессы, протекающие по экспоненциальной и логарифмической зависимости, с помощью формул и графиков показательной функции;
исследовать реальные процессы и явления, протекающие по законам показательной логарифмической зависимости, с помощью свойств показательной и логарифмической функции.
самостоятельно ставить цели, выбирать и создавать алгоритмы длярешении учебных математических проблем;
понимать сущность алгоритмических предписаний и уметь действовать и соответствии с предложенным алгоритмом;
понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации; самостоятельно определять цели деятельности по изучению элементарных функций и их применению, использовать все возможные ресурсы для достижения поставленных целей;
находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решит, в условиях неполной и избыточной, точной и вероятностной информации;
учащиеся получат возможность научиться:
устанавливать причинно-следственные связи; строить логические рассуждении, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКГ-компетентности);
видеть математическую задачу в других дисциплинах, в окружающей жизни;
выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
выбирать наиболее рациональные и эффективные способы решения задач;
интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
оценивать информацию (критическая оценка, оценка достоверности);
устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;
коммуникативные
учащиеся научатся:
организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
прогнозировать возникновение конфликтов при наличии разных точек зрения;
разрешать конфликты на основе учёта интересов и позиций всех участников;
координировать и принимать различные позиции во взаимодействии;
аргументировать свою позицию и координировать её с позициями партнеров в сотрудничестве при выработке общего решения в совместной деятельности.
Предметные результаты:
Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики (1-й уровень планируемых результатов), выпускник научится, а также получит возможность на-
учиться для развития мышления (2-й уровень планируемых результатов, выделено курсивом):
Метод координат в пространстве:
Использовать формулы скалярного произведения векторов, длины отрезка, координат середины отрезка при решении задач.
Строить точки по их координатам, находят координаты векторов. Находить угол между векторами, вычисляют угол между прямыми.
Выполнять построение фигуры, симметричной относительно оси симметрии, центра симметрии, плоскости, при параллельном переносе.
соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;
применять координатно-векторный метод для вычисления отношений, расстояний и углов;
Цилиндр, конус, шар:
Формулировать основные понятия, свойства, признаки и теоремы раздела.
Воспроизводить вывод и доказательство основных формул и теорем.
Вычислять площади боковой и полной поверхности цилиндра, конуса, шара.
Выполнять чертежи по условию задачи, строить сечения
решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
строить сечения многогранников и изображать сечения тел вращения.
Объемы тел:
Воспроизводить вывод и доказательство основных формул и теорем.
Вычислять объем прямоугольного параллелепипеда, прямой призмы, цилиндра, наклонной призмы, пирамиды, конуса, шара, шарового сегмента, шарового слоя и шарового сектора.
вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;
В повседневной жизни и при изучении других учебных предметов:
исследовать (моделировать) несложные практические ситуации на основе изученных формул и свойств фигур;
вычислять площади поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
использовать построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;
уметь интерпретировать полученный при решении результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи.
Элементы математического анализа
— Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;
— определять значение производной функции в точке по изображению касательной к графику, проведённой в этой точке;
— вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
— решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции — с другой;
— исследовать функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простых рациональных функций с использованием аппарата математического анализа.
В повседневной жизни и при изучении других учебных предметов:
— пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т. п.) или скорости убывания (падения, снижения, уменьшения и т. п.) величин в реальных процессах;
— соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т. п.);
— использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса;
— решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т. п., интерпретировать полученные
результаты.
Статистика и теория вероятностей, логика и комбинаторика
— Оперировать основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
— оперировать понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
— вычислять вероятности событий на основе подсчёта числа исходов;
— иметь представление: о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин; о математическом ожидании и дисперсии случайных величин; о нормальном распределении и примерах нормально распределённых случайных величин;
— понимать суть закона больших чисел и выборочного метода измерения вероятностей;
— иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
— иметь представление о важных частных видах распределений и применять их в решении задач;
— иметь представление о корреляции случайных величин, о линейной регрессии.
В повседневной жизни и при изучении других предметов:
— оценивать, сравнивать и вычислять в простых случаях вероятности событий в реальной жизни;
— читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков;
— выбирать подходящие методы представления и обработки данных;
— уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении без опасности населения в чрезвычайных ситуациях.
Текстовые задачи
— Решать несложные текстовые задачи разных типов, решать задачи разных типов, в том числе задачи повышенной трудности;
— выбирать оптимальный метод решения задачи, рассматривая различные методы;
— анализировать условие задачи, строить для её решения математическую модель, проводить доказательные рассуждения;
— понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;
— действовать по алгоритму, содержащемуся в условии задачи;
— использовать логические рассуждения при решении задачи;
— работать с избыточными условиями, выбирая из всей информации данные, необходимые для решения задачи;
— осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;
— анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
— решать задачи на расчёт стоимости покупок, услуг, поездок и т. п.;
— решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;
— решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;
— решать практические задачи, требующие использования отрицательных чисел: на определение температуры, положения на временно´й оси (до нашей эры и после), глубины/высоты, на движение денежных средств(приход/расход) и т. п.;
— использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т. п;
— анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;
— переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы.
История и методы математики
— Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
— знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей; представлять вклад выдающихся математиков в развитие математики и иных научных областей;
— понимать роль математики в развитии России;
— применять известные методы при решении стандартных и нестандартных математических задач; использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
— замечать и характеризовать математические закономерности в окружающей действительности и на их основе характеризовать красоту и совершенство окружающего мира, а также произведений искусства;
— применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.
Область определения и множество значений тригонометрических функций. Чётность, нечётность, периодичность тригонометрических функций. Свойства и графики функций y = cos x, y = sin x, y = tg x.
14
3
Метод координат в пространстве.
Прямоугольная система координат в пространстве Координаты точки и координаты вектора.Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Движения.
19
4
Производная и её геометрический смысл
Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.
16
5
Цилиндр, конус, шар.
Цилиндр. Площадь поверхности цилиндра. Конус. Площадь поверхности конуса. Усеченный конус. Сфера. Шар. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.
22
6
Применение производной к исследованию функций
Возрастание и убывание функций. Экстремумы функции. Применение производной к построению графиков функций. Наибольшее и наименьшее значения функции. Выпуклость графика. Точки перегиба.
12
7
Объемы тел.
Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.
21
8
Первообразная и интеграл
Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.
13
9
Элементы математической статистики, комбинаторики и теории вероятностей
Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочерёдный и одновременны выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применение вероятностных методов. Случайные величины. Центральные тенденции. Меры разброса. Решение практических задач по теме «Статистика».
29
10
Итоговое повторение курса математики 10-11 классов.
Числа и алгебраические преобразования. Уравнения. Неравенства. Системы уравнений и неравенств. Производная функции и ее применение к решению задач. Функции и графики. Текстовые задачи на проценты, движение, прогрессии.
Параллельность прямых и плоскостей в пространстве. Перпендикулярность прямых и плоскостей в пространстве. Многогранники. Векторы в пространстве. Круглые тела. Объемы круглых тел.
13
4
Итого алгебра
102
Итого геометрия
68
Итого
170
Тематическое планирование
Тема урока
Кол-во часов
Повторение
4+3
Свойства логарифмической функции, определение логарифма. решение логарифмических уравнений
1
Свойства логарифмической функции, определение логарифма. решение логарифмических уравнений
1
Определение арксинуса, арккосинуса, арктангенса, решение тригонометрических уравнений
1
Решение тригонометрических уравнений
1
Параллельность и перпендикулярность в пространстве
1
Тетраэдр, параллелепипед
1
Входная контрольная работа
1
Тригонометрические функции
14
Область определения и множество значений тригонометрических функций
1
Область определения и множество значений тригонометрических функций
1
Четность, нечетность, периодичность и не периодичность тригонометрических функций
1
Четность, нечетность, периодичность и не периодичность тригонометрических функций
1
Свойства функции y= cosx, и её график
1
Свойства функции y= cosx, и её график
1
Свойства функции y= cosx, и её график
1
Свойства функции y= sinx, и её график
1
Свойства функции y= sinx, и её график
1
Свойства функции y= tgx, её график
1
Свойства функции y= tgx, её график
1
Обратные тригонометрические функции
1
Урок обобщения и систематизации знаний
1
Контрольная работа №1 по теме «Тригонометрические функции»
1
Метод координат в пространстве
19
Прямоугольная система координат в пространстве.
1
Координаты вектора
1
Координаты вектора. Решение задач.
1
Связь между координатами векторов и координатами точек.
1
Простейшие задачи в координатах. Выводы формул.
1
Простейшие задачи в координатах. Решение задач.
1
Урок обобщения и систематизации знаний
1
Контрольная работа № 2 по теме «Координаты точки и координаты вектора».
1
Угол между векторами.
1
Скалярное произведение векторов.
1
Скалярное произведение векторов. Угол между прямыми и плоскостями.
1
Скалярное произведение векторов. Решение задач.
1
Скалярное произведение векторов. Решение задач.
1
Решение задач по теме «Скалярное произведение векторов».
1
Обобщающий урок по теме «Скалярное произведение векторов».
1
Центральная симметрия. Осевая симметрия.
1
Зеркальная симметрия. Параллельный перенос
1
Решение задач по теме «Движения».
1
Контрольная работа № 3 по теме «Скалярное произведение. Движения»
1
Производная и её геометрический смысл
16
Производная
1
Производная
1
Производная степенной функции
1
Производная степенной функции
1
Правила дифференцирования
1
Правила дифференцирования
1
Правила дифференцирования
1
Производная некоторых элементарных функций
1
Производная некоторых элементарных функций
1
Производная некоторых элементарных функций
1
Геометрический смысл производной
1
Геометрический смысл производной
1
Геометрический смысл производной
1
Урок обобщения и систематизации знаний
1
Урок обобщения и систематизации знаний
1
Контрольная работа
№4 по теме «Производная и ее геометрический смысл».
1
Цилиндр, конус, шар
22
Понятие цилиндра
1
Решение задач на нахождение элементов цилиндра.
1
Площадь поверхности цилиндра
1
Решение задач на нахождение площади поверхности цилиндра.
1
Понятие конуса
1
Решение задач на нахождение элементов конуса.
1
Площадь поверхности конуса
1
Решение задач на вычисление площади боковой поверхности конуса.
1
Усеченный конус
1
Решение задач «Усеченный конус»
1
Решение задач « Цилиндр, конус»
1
Сфера и шар
1
Уравнение сферы
1
Решение задач: уравнение сферы
1
Взаимное расположение сферы и плоскости
1
Решение задач: взаимное расположение сферы и плоскости
1
Касательная плоскость к сфере
1
Решение задач: касательная плоскость к сфере
1
Площадь сферы
1
Решение задач: площадь сферы
1
Решение задач « Сфера и шар»
1
Контрольная работа № 5 по теме «Цилиндр, конус и шар».
1
Применение производной к исследованию функций
12
Возрастание и убывание функций
1
Возрастание и убывание функций
1
Экстремумы функции
1
Экстремумы функции
1
Применение производной к построению графиков функций
1
Применение производной к построению графиков функций
1
Наибольшее и наименьшее значения функций
1
Наибольшее и наименьшее значения функций
1
Наибольшее и наименьшее значения функций
1
Выпуклость графика функции, точки перегиба
1
Урок обобщения и систематизации знаний
1
Контрольная работа №6 по теме «Применение производной к исследованию функций».
1
Объемы тел
21
Понятие объема
1
Объем прямоугольного параллелепипеда
1
Решение задач на нахождение объёма прямоугольного параллелепипеда.
1
Объем прямой призмы. Решение задач на нахождение объёма прямой призмы.
1
Объём правильной призмы. Решение задач на нахождение объёма правильной призмы.
1
Объем цилиндра. Вывод формулы и решение задач.
1
Вычисление объемов тел с помощью первообразной
1
Объем наклонной призмы
1
Решение задач на нахождение объёма наклонной призмы.
1
Объем пирамиды
1
Решение задач на нахождение объёма пирамиды.
1
Объем конуса
1
Решение задач на нахождение объёма конуса.
1
Контрольная работа №7 по теме «Объём цилиндра, наклонной призмы, пирамиды и конуса».
1
Объем шара
1
Решение задач на нахождение объёма шара
1
Объем шарового сегмента, шарового слоя и шарового сектора
1
Площадь сферы.
1
Решение задач на нахождение площади сферы.
1
Решение задач « Объемы тел»
1
Контрольная работа №8 по теме «Объём шара и площадь сферы».
1
Интеграл
13
Первообразная
1
Первообразная
1
Правила нахождения первообразных
1
Правила нахождения первообразных
1
Правила нахождения первообразных
1
Площадь криволинейной трапеции и интеграл
1
Площадь криволинейной трапеции и интеграл
1
Вычисление интегралов. Вычисление площадей с помощью интегралов
1
Вычисление интегралов. Вычисление площадей с помощью интегралов
1
Применение производной и интеграла к решению практических задач
1
Применение производной и интеграла к решению практических задач
1
Урок обобщения и систематизации знаний
1
Контрольная работа №9 по теме «Интеграл».
1
Комбинаторика
10
Правило произведения
1
Перестановки
1
Перестановки
1
Размещения.
1
Сочетания и их свойства.
1
Сочетания и их свойства.
1
Биноминальная формула Ньютона.
1
Биноминальная формула Ньютона.
1
Урок обобщения и систематизации знаний
1
Контрольная работа №10 по теме «Комбинаторика».
1
Элементы теории вероятностей
11
События.
1
Комбинация событий. Противоположное событие
1
Вероятность события.
1
Вероятность события.
1
Сложение вероятностей.
1
Сложение вероятностей.
1
Независимые события. Умножение вероятностей.
1
Статистическая вероятность.
1
Статистическая вероятность.
1
Урок обобщения и систематизации знаний
1
Контрольная работа №11 по теме «Элементы теории вероятностей».
1
Статистика
8
Случайные величины.
1
Случайные величины.
1
Центральные тенденции.
1
Центральные тенденции.
1
Меры разброса.
1
Меры разброса.
1
Урок обобщения и систематизации знаний
1
Контрольная работа №12 по теме «Статистика».
1
Итоговое повторение курса математики
13+4
Планиметрия. Треугольники, Четырёхугольники.
1
Выражения и преобразования
1
Стереометрия. Метод координат и векторы в пространстве.
1
Выражения и преобразования
1
Взаимное расположение прямых и плоскостей. Параллельность. Перпендикулярность.