Просмотр содержимого документа
«Рабочая программа по алгебре 8 класс, ФГОС»
Ростовская область Тацинский район х.Крюков
Муниципальное бюджетное общеобразовательное учреждение
Крюковская средняя общеобразовательная школа
«Утверждаю»
директор МБОУ Крюковской СОШ
Приказ №_____ от ______________
_______________ Вербина Т.Н.
РАБОЧАЯ ПРОГРАММА
по алгебре
основное общее образование 8 класс
Количество часов: 105
Учитель: Угроватова Т.В.
Программа разработана на основе примерной авторской программы по алгебре под редакцией Г.В.Дорофеева. – М.: Просвещение.
Пояснительная записка
Рабочая программа по алгебре составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте основного общего образования, программах развития и формирования универсальных учебных действий для основного общего образования, с учетом примерной программы по алгебре годового календарного учебного графика МБОУ Крюковской СОШ на 2017-2018 учебный год. Федеральным перечнем учебников, рекомендованных (допущенных) Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях, примерной программой по математике основного общего образования, авторской программой по алгебре основного общего образования, авторской программой по алгебре Г.В. Дорофеева, И.Ф. Шарыгина, С.Б. Суворова, Е.А. Бунимович и др., составитель Т.А. Бурмистрова «Алгебра 7-9» М.: Просвещение, 2016 г.
Рабочая программа в 8 классе рассчитана на 105 часов , 3 часа в неделю.
В соответствии с учебным планом МБОУ Крюковской СОШ.
Программа учитывает возрастные и психологические особенности школьников, учитывает их интересы и потребности, обеспечивает развитие учебной деятельности учащихся, способствует формированию универсальных учебных действий, обеспечивающих овладение ключевыми компетенциями, составляющими основу умения учиться. Реализует цели и задачи МБОУ Крюковской СОШ.
Выбор данной авторской программы и учебно-методического комплекса обусловлен преемственностью целей образования, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся, и опираются на вычислительные умения и навыки учащихся. Новизна данной программы определяется тем, что в основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям. Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.
Обучение алгебре в 7 - 9 классах основной школы направлено на достижение следующих целей:
в направлении личностного развития
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие логического и критического мышления; культуры речи, способности к умственному эксперименту;
воспитание качеств личности, способность принимать самостоятельные решения;
формирование качеств мышления;
развитие интереса к математическому творчеству и математических способностей;
в метапредметном направлении
развитие представлений о математике как форме описания и методе познания действительности;
формирование общих способов интеллектуальной деятельности, характерных для математики;
в предметном направлении
овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Основное содержание курса Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений. Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена.
Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.
Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.
Уравнения и неравенства. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения, Решение рациональных уравнений. Примеры решения уравнений высших степеней; методы замены переменной, разложения на множители.
Уравнение с двумя переменными; решение уравнения с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.
Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.
Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.
Числовые последовательности. Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий.
Cложные проценты.
Числовые функции. Понятие функции. Область определения функции. Способы задания функции. График функции,возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.
Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.
Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.
Координаты. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.
Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.
Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем
Элементы логики, комбинаторики, статистики и теории вероятностей
Множества и комбинаторика.Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера.
Примеры решения комбинаторных задач: перебор вариантов, правило умножения.
Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие о статистическом выводе на основе выборки.
Понятие и примеры случайных событий.
Вероятность. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.
(Темы, выделенные курсивом, контролю не подлежат).
Содержание учебного предмета Содержание и последовательность изучения всех разделов соответствует авторской программе.
№ п\п
Наименование темы
Количество часов по авторской программе/количество контрольных работ
К\р
Количество часов по рабочей программе/количество контрольных работ
К\Р
8 класс
1.
Алгебраические дроби
20
1
23
1
2.
Квадратные корни
15
1
15
1
3.
Квадратные уравнения
19
1
19
1
4.
Системы уравнений
20
1
19
1
5.
Функции
14
1
14
1
6.
Вероятность и статистика
9
9
7.
Итоговое повторение
5
2
6
2
Итого
102
7
105
7
Основное содержание курса 8 класса
№ п\п
Наименование темы
Основное содержание темы
Основная цель изучения темы
1.
Алгебраические дроби
Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение и деление алгебраических дробей. Степень с целым показателем и ее свойства. Выделение множителя — степени десяти — в записи числа
Сформировать умения выполнять действия с алгебраическими дробями, действия со степенями с целым показателем; развить навыки решения текстовых задач алгебраическим методом
2.
Квадратные корни
Квадратный корень из числа. Понятие об иррациональном
числе. Десятичные приближения квадратного корня. Свойства арифметического квадратного корня и их применение к преобразованию выражений. Корень третьей степени, понятие о корне n-й степени из числа. Нахождение приближенного значения корня с помощью калькулятора. Графики зависимостей у = √х, у= n√х
Научить преобразованиям выражений, содержащих квадратные корни; на примере квадратного и кубического корней сформировать представления о корне п-й степени.
3.
Квадратные уравнения
Квадратное уравнение. Формулы корней квадратного уравнения. Решение текстовых задач составлением квадратных уравнений. Теорема Виета. Разложение на множители квадратного трехчлена.
Научить решать квадратные уравнения и использовать их при решении текстовых задач.
4.
Системы уравнений
Уравнение с двумя переменными. Линейное уравнение с двумя переменными и его график. Примеры решения уравнений в целых числах. Система уравнений; решение систем
двух линейных уравнений с двумя переменными, графическая интерпретация. Примеры решения нелинейных систем. Решение текстовых задач составлением систем уравнений. Уравнение с несколькими переменными.
Ввести понятия уравнения с двумя переменными, графика уравнения, системы уравнений; обучить решению систем линейных уравнений с двумя переменными, а также использованию приема составления систем уравнений при решении текстовых задач.
5.
Функции
Функция. Область определения и область значений функции. График функции. Возрастание и убывание функции, сохранение знака на промежутке, нули функции. Функции у = kx, у = kx+ l, у=k\x и их графики. Примеры графических зависимостей, отражающих реальные процессы.
Познакомить учащихся с понятием функции, расширить математический язык введением функциональной терминологии и символики; рассмотреть свойства и графики конкретных числовых функций: линейной функции и функции у=k\x; показать значимость функционального аппарата для моделирования реальных ситуаций, научить в несложных случаях применять полученные знания для решения прикладных и практических задач.
6.
Вероятность и статистика
Статистические характеристики ряда данных, медиана, среднее арифметическое, размах. Таблица частот. Вероятность равновозможных событий. Классическая формула вычисления вероятности события и условия ее применения. Представление о геометрической вероятности.
Сформировать представление о возможностях описания и обработки данных с помощью различных средних; познакомить учащихся с вычислениями вероятности случайного события с помощью классической формулы и из геометрических соображений
7.
Итоговое повторение
№ урока
Тема урока
Вид контроля
Формы контроля
№ 5
№ 23
№ 38
№ 41
№ 58
№ 77
№ 91
№ 100
№ 101
Входная контрольная работа
"Алгебраические дроби."
"Квадратные корни."
Итоговая за 1-е полугодие
Квадратные уравнения."
"Системы уравнений."
"Функции"
"Вероятность и статистика."
Итоговая годовая контрольная работа
Тестирование
Текущий письменный
Текущий письменный
Итоговый письменный
Текущий письменный
Текущий письменный
Текущий письменный
Текущий письменный
Итоговый письменный
Тест
Контрольная работа № 1
Контрольная работа № 2
Контрольная работа за 1-е полугодие
Контрольная работа № 3
Контрольная работа № 4
Контрольная работа № 5
Контрольная работа № 6
Итоговая контрольная работа
Требования к планируемым результатам изучения программы.
Личностные результаты:
у учащихся будут сформированы:
ответственного отношения к учению;
готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
начальные навыки адаптации в динамично изменяющемся мире;
экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровье сберегающего поведения;
формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
умения контролировать процесс и результат учебной математической деятельности;
воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
умение контролировать процесс и результат учебной и математической деятельности;
критичность мышления, инициатива, находчивость, активность при решении математических задач.
у учащихся могут быть сформированы:
первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
коммуникативная компетентность в общении и сотрудничестве со сверстниками, старшими и младшими обучающимися в образовательной, учебно-исследовательской, творческой и других видах деятельности;
креативности мышления, инициативы, находчивости, активности при решении арифметических задач.
Метапредметные результаты:
регулятивные УУД
учащиеся научатся:
формулировать и удерживать учебную задачу;
выбирать действия в соответствии с поставленной задачей и условиями её реализации;
планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
предвидеть уровень освоения знаний, его временных характеристик;
составлять план и последовательность действий;
осуществлять контроль по образцу и вносить необходимые коррективы;
адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
сличать способ действия и его результат с эталоном с целью обнаружения отклонений и отличий от эталона;
учащиеся получат возможность научиться:
определять последовательность промежуточных целей и соответствующих им действий с учетом конечного результата;
предвидеть возможности получения конкретного результата при решении задач;
выделять и осознавать того, что уже усвоено и что еще подлежит усвоению, осознавать качество и уровень усвоения, давать самооценку своей деятельности;
концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий.
познавательные УУД:
учащиеся научатся:
самостоятельно выделять и формулировать познавательные цели;
использовать общие приемы решения задач;
применять правила и пользоваться инструкциями, освоенными закономерностями;
осуществлять смысловое чтение;
создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;
умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умения находить в различных источниках, в том числе контролируемом пространстве Интернета, информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
формирования учебной и обще пользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
видеть математическую задачу в других дисциплинах, в окружающей жизни;
выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
оценивать информацию (критическая оценка, оценка достоверности);
устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения.
Коммуникативные УУД
учащиеся получат возможность научиться:
организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов, слушать партнёра, формулировать, аргументировать и отстаивать своё мнение;
прогнозировать возникновение конфликтов при наличии разных точек зрения;
разрешать конфликты на основе учета интересов и позиций всех участников;
координировать и принимать различные позиции во взаимодействии;
аргументировать свою позицию и координировать её с позициями партнеров в сотрудничестве при выборе общего решения в совместной деятельности.
Предметные результаты
№
Наименование разделов и тем
Дидактические единицы образовательного процесса
ученик научится
ученик получит возможность научиться
8 класс
1
Алгебраические дроби
- владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
-выполнять преобразования выражений, содержащих степени с целыми показателями
- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
- научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
2
Квадратные корни
- выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
- применять полученные знания при решении задач;
3
Квадратные уравнения
- решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
- овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
4
Системы уравнений
- решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
- овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
5
Функции
- понимать и использовать функциональные понятия и язык (термины, символические обозначения);
- строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
- использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
6
Вероятность и статистика
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.