kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Рабочая программа Г-8 кл.

Нажмите, чтобы узнать подробности

Рабочая программа по геометрия 8 класс составлена по учебнику Геаметрия 7-9 классы.Авторы: Л.С.Атанасян, В.ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина.

Просмотр содержимого документа
«Рабочая программа Г-8 кл.»




Рабочая программа курса «Геометрия»

(2016-2017 уч.г. базовый уровень)

8 класс

Пояснительная записка

Рабочая программа разработана в соответствии с основными положениями Федерального государственного образовательного стандарта основного общего образования по математике, планируемыми результатами основного общего образования по математике, с требованиями Примерной основной образовательной программы: Москва «Просвещение» 2014г. и ориентирована на работу по учебно-методическому комплекту.

1.Геометрия 7-9кл. Учебник для общеобразовательных учреждений: Авторы Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.,С. Киселёва, Э.Г. Позняк– М: «Просвещение», 2011.г. 2.Программы общеобразовательных учреждений  ГЕОМЕТРИЯ  7 – 9 классы ,Москва «Просвещение» 2011 год.

3.Геометрия. Сборник рабочих программ 7-9 классы. Москва «Просвещение» 2014

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.

На основании требований Государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно- ориентированный, деятельностный подходы, которые определяют задачи обучения:

1.Продолжить овладение системой геометрических знаний и умений, необходимых для приме­нения в практической деятельности, изучения смежных дисциплин, продолжения образования.

2.Продолжить интеллектуальное развитие, формирование качеств личности, необходимых че­ловеку для полноценной жизни в современном обществе; ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

3.Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

4.Воспитание культуры личности, отношение к геометрии как к части общечеловеческой куль­туры, понимание значимости геометрии для научно-технического прогресса.

Основные цели курса:

-овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;

-приобретение опыта планирования и осуществления алгоритмической деятельности;

-приобретение умений ясного и точного изложения мыслей;

-развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;

-научить пользоваться геометрическим языком для описания предметов.

Общая характеристика учебного курса

Геометрия один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими фигурами и их свойствами.

В курсе геометрии 8 класса систематизируются знания обучающихся о простейших геометрических фигурах и их свойствах; вводится понятие равенства фигур; вводится понятие теоремы; вырабатывается умение доказывать равенство треугольников с помощью изученных признаков; вводится новый класс задач - на построение с помощью циркуля и линейки; вводится одно из важнейших понятий - понятие параллельных прямых; даётся первое представление об аксиомах и аксиоматическом методе в геометрии; вводится аксиома параллельных прямых; рассматриваются новые интересные и важные свойства треугольников (в данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников).

Курс рационально сочетает логическую строгость и геометрическую наглядность. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса , повышается роль дедукции, степень абстракции изучаемого материала. Учащиеся должны овладеть приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изучение курса позволит начать работу по формированию представлений учащихся о строении математической теории, обеспечит развитие логического мышления учащихся. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

Место предмета в базисном учебном плане

Согласно федеральному базисному учебному плану на изучение математики в 8 классе отводится 70 часа из расчета: 2 часа в неделю, в том числе 5 ч для проведения контрольных работ. При этом в ней предусмотрен резерв свободного учебного времени в объеме 6 часов для использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий.

Основная форма организации образовательного процесса – классно-урочная система.

Личностные, метапредметные и предметные результаты освоения содержания курса

В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

-планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

-решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

-исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

-ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

-проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

-поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать:

-существо понятия математического доказательства; примеры доказательств;

-существо понятия алгоритма; примеры алгоритмов;

-как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

-как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

-как потребности практики привели математическую науку к необходимости расширения понятия числа;

-вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

-каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

-смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Уметь:

-пользоваться языком геометрии для описания предметов окружающего мира;

-распознавать геометрические фигуры, различать их взаимное расположение;

-изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

-распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

-в простейших случаях строить сечения и развертки пространственных тел;

-проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

-вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

-решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

-проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

-решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

-описания реальных ситуаций на языке геометрии;

-расчетов, включающих простейшие тригонометрические формулы;

-решения геометрических задач с использованием тригонометрии

-решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

-построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

В курсе геометрии 8 класса изучаются наиболее важные виды четы­рехугольников -параллелограмм, прямоугольник, ромб, квад­рат, трапеция; даётся представление о фигурах, обладающих осе­вой или центральной симметрией; расширяются и углубляются представления обучающихся об измерении и вычисле­нии площадей; выводятся формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказывается одна из глав­ных теорем геометрии — теорему Пифагора; вводится понятие подобных треугольни­ков; рассматриваются признаки подобия треугольников и их применения; делается первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии; расширяются сведения об окружности, полученные учащимися в 7 классе; изучаются новые факты, связанные с окружностью; знакомятся обучающиеся с четырьмя заме­чательными точками треугольника; знакомятся обучающиеся с выполнением действий над векторами как направленными отрезками, что важно для применения векторов в физике.

Предусматривается применение следующих технологий обучения:

1.традиционная классно-урочная

2.игровые методы

3.проблемно-диалогическое обучение

4.обучение в сотрудничестве

5.здоровьесберегающие технологии

6.информационно-коммуникационные технологии

Виды и формы контроля:

1.Переводная аттестация

2.Промежуточный контроль

3.Предупредительный контроль

4.Контрольные работы, срезы, мониторинги, тесты, диктанты

Учебно – тематический план

ТЕМА


Кол-во часов

1.

Четырехугольники

14

2.

Площадь.

14

3.

Подобные треугольники

19

4.

Окружность.

17

5.

Повторение. Решение задач.

4


Итого:

68

Содержание тем учебного курса

Четырехугольники (14 часов)

Многоугольник, выпуклый многоугольник, четырехуголь­ник. Параллелограмм, его свойства и признаки. Трапеция. Пря­моугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

Площадь (14 часов)

Понятие площади многоугольника. Площади прямоуголь­ника, параллелограмма, треугольника, трапеции. Теорема Пи­фагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Подобные треугольники (19 часов)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Цель: ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Окружность (17 часов)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного че­тырехугольника.

Решение задач. (6 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.

Календарно - тематическое планирование


Модули, темы, уроки

Число часов

Дата

Корректировка

ЭОР

Материал в учебнике


Четырёхугольники. Глава V

14час.





1

Многоугольники.

1



ИКТ

През.

п.39

2

Многоугольники.

1




п.40, п.41

3

Параллелограмм.

1



ИКТ,реш задач

п.42

4

Признаки параллелограмма.

1



ИКТ,реш.з.

п.43


5

Решение задач по теме «Параллелограмм»

1





6

Трапеция.

1



ИКТ,през.

п.44

7

Теорема Фалеса.

1





8

Задачи на построение

1





9

Прямоугольник.

1



ИКТ,сам.р.

п.45

10

Ромб. Квадрат.

1



ИКТ,прак.з.

п.46

11

Решение задач

1





12

Осевая и центральная симметрия.

1



ИКТ, през.

п.47

13

Решение задач.

1





14

Контрольная работа №1 по теме «Четырёхугольники»

1






Площадь Глава VI

14час.





15

Площадь многоугольника.

1




п.48

16

Площадь прямоугольника.

1



ИКТ,дик.

п.49, п.50

17

Площадь параллелограмма

1




п.51

18

Площади треугольника

1



ИКТ, мат.д.

п.52

19

Площади треугольника

1




п.52

20

Площади трапеции.

1



ИКТ,реш.з.

п.53

21

Решение задач на вычисление площади фигур

1





22

Решение задач на нахождение площади

1





23

Теорема Пифагора.

1



ИКТ, реш.з.

п.54

24

Теорема, обратная теореме Пифагора.

1




п.55

25

Решение задач по теме «Теорема Пифагора».

1



ИКТ. С.р.


26

Решение задач.

1





27

Решение задач.

1





28

Контрольная работа № 2 по теме «Площадь»

1






Подобные треугольники. Глава VII

19час.





29

Определение подобных треугольников

1





п.57

30

Отношение площадей подобных треугольников

1




п.58

31

Первый признак подобия треугольников

1



ИКТ, през.

п.59

32

Решение задач на применение первого признака подобия треугольников

1





33

Второй и третий признаки подобия треугольников

1




. ИКТ, през.

п.60

п.61

34

Решение задач на применении признаков подобия треугольников

1





35

Решение задач на применении признаков подобия треугольников

1





36

Контрольная работа № 3 по теме «Признаки подобия треугольников»

1





37

Средняя линия треугольника.

1



ИКТ, мат.д.

п.62

38

Средняя линия треугольника. Свойство медиан треугольника

1





39

Пропорциональные отрезки

1



ИКТ, реш. Зад.

п.63

40

Пропорциональные отрезки в прямоугольном треугольнике

1




п.65

41

Измерительные работы на местности

1




п.64

42

Задачи на построение методом подобия

1




п.64

43

Решение задач на построение методом подобных треугольников

1





44

Синус, косинус и тангенс острого угла прямоугольного треугольника

1



ИКТ,през.

п.66

45

Значения синуса, косинуса и тангенса для углов 300, 450и 600

1



ИКТ,нов.м.

п.67

46

Соотношения между сторонами и углами прямоугольного треугольника. Решение задач

1





47

Контрольная работа № 4 по теме «Применение подобия»

1






Окружность Глава VIII

17час.





48

Взаимное расположение прямой и окружности

1



ИКТ,през.

п.68

49

Касательная к окружности.

1




п.69

50

Касательная к окружности. Решение задач

1



ИКТ,с.р.

п.69

51

Градусная мера дуги окружности

1




п.70

52

Теорема о вписанном угле

1




п.71

53

Теорема об отрезках пересекающихся хорд

1



ИКТ,през.


54

Решение задач по теме «Центральные и вписанные углы».

1





55

Свойство биссектрисы угла

1




п.72

56

Серединный перпендикуляр

1




п.72

57

Теорема о точке пересечения высот треугольника

1




п.73

58

Вписанная окружности.

1



ИКТ през.

п.74

59

Свойство описанного четырёхугольника

1




п.74

60

Описанная окружность

1



ИКТ, през.

п.75

61

Свойство вписанного четырёхугольника

1




п.75

62, 63

Решение задач по теме «Окружность»

2



ИКТ, сам.р.


64

Контрольная работа № 5 по теме «Окружность»

1






Повторение

4час.





65

Четырёхугольники

1



ИКТ,реш. зад.


66

Площадь

1



ИКТ, реш.з.


67

Площадь

1





68

Подобные треугольники

1



ИКТ,през.


Требования к уровню подготовки обучающихся

В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овла­девали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

-планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

-решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

-исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

-ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

-проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

-поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Критерии и нормы оценки знаний, умений и навыков обучающихся 1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

-работа выполнена полностью;

-в логических рассуждениях и обосновании решения нет пробелов и ошибок;

-в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

-работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

-допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

-допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

-допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

-работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

-полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

-изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

-правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

-показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

-продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

-отвечал самостоятельно, без наводящих вопросов учителя;

-возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

-в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

-допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

-допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

-неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

-имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

-ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

-при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

-не раскрыто основное содержание учебного материала;

-обнаружено незнание учеником большей или наиболее важной части учебного материала;

-допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

-ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

-незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

-незнание наименований единиц измерения;

-неумение выделить в ответе главное;

-неумение применять знания, алгоритмы для решения задач;

-неумение делать выводы и обобщения;

-неумение читать и строить графики;

-неумение пользоваться первоисточниками, учебником и справочниками;

-потеря корня или сохранение постороннего корня;

-отбрасывание без объяснений одного из них;

-равнозначные им ошибки;

-вычислительные ошибки, если они не являются опиской;

-логические ошибки.

3.2. К негрубым ошибкам следует отнести:

-неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

-неточность графика;

-нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

-нерациональные методы работы со справочной и другой литературой;

-неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

-нерациональные приемы вычислений и преобразований;

-небрежное выполнение записей, чертежей, схем, графиков.

Литература

  1. Примерная основная образовательная программа образовательного учреждения. Основная школа: Москва «Просвещение» 2014г.

  2. Программы общеобразовательных учреждений. Геометрия 7-9 классы. Москва «Просвещение» 2009 г.

  3. Геометрия: учеб, для 7—9 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2011г.

  4. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение,2009 год.

  5. Гусев В. А. Геометрия: дидактические материалы для 8 кл. / В.А. Гу­сев, А.И. Медяник. — М.: Просвещение,2009год.

  6. Зив Б.Г. Геометрия: Дидактические материалы для 8 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2009 год.

  7. Гаврилова Н.Ф. Поурочные разработки по геометрии. 8 класс. М.: ВАКО, 2008 – (В помощь школьному учителю)

Дополнительная литература:

  1. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2009;

  2. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2008.

  3. Гаврилова Н.Ф. Поурочные разработки по геометрии: 8 класс. – М.: ВАКО, 2009 год

Интернет – ресурсы:

http://www.prosv.ru - сайт издательства «Просвещение» (рубрика «Математика»)

http:/www.drofa.ru - сайт издательства Дрофа (рубрика «Математика»)

http://www.center.fio.ru/som - методические рекомендации учителю-предметнику (представлены все школьные предметы).

http://www.internet-scool.ru - сайт Интернет – школы издательства Просвещение. Учебный план разработан на основе федерального базисного учебного плана для общеобразовательных учреждений РФ и представляет область знаний «Математика». На сайте представлены Интернет-уроки по алгебре и началам анализа и геометрии, включают подготовку сдачи ЕГЭ. http://www.legion.ru – сайт издательства «Легион»

http://www.intellectcentre.ru – сайт издательства «Интеллект-Центр», где можно найти учебно-тренировочные материалы, демонстрационные версии, банк тренировочных заданий с ответами, методические рекомендации и образцы решений

Интерактивный учебник. http://www.matematika-na.ru

Энциклопедия для детей http://the800.info/yentsiklopediya-dlya-detey-matematika

Энциклопедия по математике http://www.krugosvet.ru/enc/nauka_i_tehnika/matematika/MATEMATIKA.html

Справочник по математике для школьников http://www.resolventa.ru/demo/demomath.htm

Математика он-лайн http://uchit.rastu.ru

Сайты для учителя: Педсовет, математика http://pedsovet.su/load/135

Учительский портал. Математика http://www.uchportal.ru/load/28

Уроки. Нет. Для учителя математики, алгебры, геометрии http://www.uroki.net/docmat.htm

Видеоуроки по математике – 8 класс , UROKIMATEMAIKI.RU ( Игорь Жаборовский )


Получите в подарок сайт учителя

Предмет: Математика

Категория: Планирование

Целевая аудитория: 8 класс

Скачать
Рабочая программа Г-8 кл.

Автор: Безрукова Валентина Алексеевна

Дата: 10.06.2017

Номер свидетельства: 421285

Похожие файлы

object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(95) "Рабочая программа по русскому языку в 5 классе с УУД "
    ["seo_title"] => string(57) "rabochaia-proghramma-po-russkomu-iazyku-v-5-klassie-s-uud"
    ["file_id"] => string(6) "244478"
    ["category_seo"] => string(12) "russkiyYazik"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1445948532"
  }
}
object(ArrayObject)#885 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(118) "Методическая разработка "Рабочая программа по обучению грамоте""
    ["seo_title"] => string(67) "mietodichieskaiarazrabotkarabochaiaproghrammapoobuchieniiughramotie"
    ["file_id"] => string(6) "309141"
    ["category_seo"] => string(12) "russkiyYazik"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1458746142"
  }
}
object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(113) "Рабочая программа по литературному чтению  УМК "Школа России" "
    ["seo_title"] => string(66) "rabochaia-proghramma-po-litieraturnomu-chtieniiu-umk-shkola-rossii"
    ["file_id"] => string(6) "143159"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1418467482"
  }
}
object(ArrayObject)#885 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(236) "МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ   ПО СОСТАВЛЕНИЮ РАБОЧЕЙ ПРОГРАММЫ К ДОПОЛНИТЕЛЬНОЙ ОБЩЕОБРАЗОВАТЕЛЬНОЙ ОБЩЕРАЗВИВАЮЩЕЙ  ПРОГРАММЕ "
    ["seo_title"] => string(148) "mietodichieskiie-riekomiendatsii-po-sostavlieniiu-rabochiei-programmy-k-dopolnitiel-noi-obshchieobrazovatiel-noi-obshchierazvivaiushchiei-programmie"
    ["file_id"] => string(6) "238779"
    ["category_seo"] => string(10) "vneurochka"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1444653524"
  }
}
object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(105) "Рабочая программа по физической культуре для 10-11 классов "
    ["seo_title"] => string(65) "rabochaia-proghramma-po-fizichieskoi-kul-turie-dlia-10-11-klassov"
    ["file_id"] => string(6) "189675"
    ["category_seo"] => string(10) "fizkultura"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1427008325"
  }
}

Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства