Рабочая программа по алгебре и началам анализа, 11 класс, УМК А.Г. Мордкович
Рабочая программа по алгебре и началам анализа, 11 класс, УМК А.Г. Мордкович
Материал представляет собой рабочую программу по предмету "Алгебра и начала анализа" для 11 класса учебно-методический комплекс А.Г.Мордкович. Программа включает в себя пояснительную записку, цели, задачи, требования к уровню подготовки обучающихся, структуру программы и ресурсное обеспечение рабочей программы. Предназначена для учителей математики, работающих в 11 классах по УМК А.Г. Мордковича.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Рабочая программа по алгебре и началам анализа, 11 класс, УМК А.Г. Мордкович »
Пояснительная записка
Уровень рабочей программы – базовый и профильный.
Примерная программа по алгебре и началам анализа составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования на базовом уровне.
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.
Цели:
Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
ЗАДАЧИ:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применение функций для описания и изучения реальных зависимостей;
знакомство с основными идеями и методами математического анализа.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ:
В результате изучения математики на базовом уровне ученик должен
знать/понимать:
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира.
СОДЕРЖАНИЕ ПРОГРАММЫ
АЛГЕБРА
Уметь:
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.
Функции и графики.
Уметь:
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
Начала математического анализа.
Уметь:
вычислять производные и первообразные элементарных функций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.
Уравнения и неравенства.
Уметь:
решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
составлять уравнения и неравенства по условию задачи;
использовать для приближенного решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей.
Элементы комбинаторики, статистики и теории вероятностей.
Уметь:
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: анализа реальных числовых данных, представленных в виде диаграмм, графиков; анализа информации статистического характера.
СТРУКТУРА ПРОГРАММЫ
Базовый уровень. На изучение алгебры и начала анализа в 11 классе отводится 102 часа из расчета 34 учебных недели, 3 урока в неделю.
Тема
Количество часов
Обязательный минимум содержания
Повторение курса алгебры 10 класса.
10
Систематизация и актуализация знаний курса алгебры 10 класса.
2. Первообразная и интеграл.
13
Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.
3. Степени и корни. Степенные функции.
17
Корни и степени. Корень степени n1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем Свойства степени с действительным показателем.
Степенная функция с натуральным показателем, ее свойства и график.
Решение иррациональных уравнений.
4. Показательная и логарифмическая функции.
27
Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.
Показательная функция (экспонента), ее свойства и график.
Логарифмическая функция, ее свойства и график.
Решение показательных, логарифмических уравнений и неравенств.
Производные показательной и логарифмической функций.
5. Уравнения и неравенства. Системы уравнений и неравенств.
15
Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.
Использование свойств и графиков функций при решении уравнений и неравенств. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.
6. Элементы математической статистики, комбинаторики и теории вероятностей.
12
Табличное и графическое представление данных. Числовые характеристики рядов данных.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.
7. Итоговое повторение
8
Профильный уровень. На изучение алгебры и начала анализа в 11 классе отводится 136 часов из расчета 34 учебных недели, 4 урока в неделю.
Тема
Количество часов
Обязательный минимум содержания
Повторение курса алгебры 10 класса.
10
Систематизация и актуализация знаний курса алгебры 10 класса.
Многочлены
10
Многочлены от одной и нескольких переменных. Уравнения высших степеней.
Первообразная и интеграл.
12
Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.
Степени и корни. Степенные функции.
18
Корни и степени. Корень степени n1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем Свойства степени с действительным показателем.
Степенная функция с натуральным показателем, ее свойства и график.
Решение иррациональных уравнений.
Показательная и логарифмическая функции.
31
Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.
Показательная функция (экспонента), ее свойства и график.
Логарифмическая функция, ее свойства и график.
Решение показательных, логарифмических уравнений и неравенств.
Производные показательной и логарифмической функций.
Уравнения и неравенства. Системы уравнений и неравенств.
26
Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.
Использование свойств и графиков функций при решении уравнений и неравенств. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.
Элементы математической статистики, комбинаторики и теории вероятностей.
13
Табличное и графическое представление данных. Числовые характеристики рядов данных.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.
Итоговое повторение
16
Ресурсное обеспечение рабочей программы
1. А.Г. Мордкович. Алгебра и начала математического анализа. 10-11 классы. В 2 ч. Учебник для учащихся общеобразовательных учреждений (базовый уровень).- М: Мнемозина, 2008 г.
2. Александрова Л.А. Алгебра и начала анализа. 11 кл. Самостоятельные работы: пособие для общеобразовательных учреждений/ под. ред. Мордковича А.Г.–М.: Мнемозина,2007г.
3. А.Г. Мордкович, Е.Е.Тульчинская. Алгебра и начала анализа. 10-11 кл. Контрольные работы, М.: Мнемозина, 2005 г.
4. Л.О.Денищева. Алгебра и начала анализа. 10-11 кл. Тематические тесты и зачеты для общеобразовательных учреждений.- М: Мнемозина, 2005 г.
5. А.Н. Рурукин, И.А. Масленникова, Т.Г. Мишина. Поурочные разработки по алгебре и началам анализа к УМК А.Г. Мордковича, 11 класс - М: ВАКО, 2011 г.
6. Г.Г.Левитас. Математические диктанты. 7-11 классы. Дидактические материалы.- М.: Илекса, 2006 г.
7. Математика. Учебно – тренировочные материалы для подготовки учащихся. / ФИПИ – М.: Интеллект – Центр, 2012 г.
8. В.С. Крамор. Повторяем и систематизируем школьный курс алгебры и начал анализа. М.: Просвещение, 1990 г.
9. В.С. Крамор. Задачи с параметрами и методы их решения. М.: ОНИКС – Мир и образование, 2007 г.
10. М.И. Сканави. Сборник задач по математике с решениями. М.: ОНИКС: Альянс, 1999г.
object(ArrayObject)#888 (1) {
["storage":"ArrayObject":private] => array(6) {
["title"] => string(203) "Рабочая программа по алгебре и началам анализа для 11 класса базового уровня к УМК под ред. Мордковича А.Г. и др. "
["seo_title"] => string(122) "rabochaia-proghramma-po-alghiebrie-i-nachalam-analiza-dlia-11-klassa-bazovogho-urovnia-k-umk-pod-ried-mordkovicha-a-g-i-dr"
["file_id"] => string(6) "225354"
["category_seo"] => string(10) "matematika"
["subcategory_seo"] => string(12) "planirovanie"
["date"] => string(10) "1439577291"
}
}