№ 2
Тема урока: " Системы счисления: двоичная, восьмеричная, десятичная, шестнадцатеричная. Перевод целых чисел из одной системы счисления в другую ".
Цель урока: дать первичное представление о структуре компьютерной памяти, системах счисления.
Задачи:
- актуализация изученных ранее в курсе математики подходы к представлению числовой информации;
- развитие эмоционально-эстетической отзывчивости учащихся средствами комплексного воздействия информационных технологий;
- воспитание интерес к историческим сведениям.
Оборудование: презентация «История развития систем счисления.ppt», компьютер учителя, мультимедийный проектор, экран.
Тип урока: изучение нового материала.
Методы: словесные, наглядные, практические.
План урока:
I. Орг. момент.(1 мин)
II. Теоретическая часть. ТБ. (15 мин)
III. Практическая часть. (15 мин)
IV. Д/з. (2 мин)
V. Вопросы учеников. (5 мин)
VI. Итог урока. (2 мин)
Ход урока:
Изучение нового материала
- Общие сведения о системах счисления
Под системой счисления принято понимать совокупность приемов записи чисел. Условные знаки, которые при этом применяются, называют цифрами. В некоторых системах счисления кроме цифр могут использоваться специальные символы. Таким образом, в системах счислениях числа записываются как последовательность цифр или специальных символов. Системы счисления подразделяются на позиционные и непозиционные.
В непозиционной системе счисления значение цифры не зависит от ее положения в записи числа. К непозиционной системе счисления относится, так называемая, Римская система счисления. Например, возьмем число ХХХ из Римской системы счисления. В данном числе цифра Х в любом месте означает число десять.
В позиционных системах счисления значение каждой цифры зависит от ее положения (позиции) в ряду цифр, изображающих это число. Например, в числе 999 (десятичная система счисления) первая справа цифра 9 означает количество единиц, содержащихся в числе, вторая – количество десятков, третья – количество сотен. Принимая за основание системы различные числа можно получить соответствующие системы счисления. Число Р единиц одного разряда, объединяемых в единицу более старшего разряда, называют основанием позиционной системы счисления, а сама система называется Р-ичной. Поэтому для записи произвольного числа в какой-либо позиционной системе счисления достаточно иметь Р различных цифр. Таким образом, любая позиционная система с любым целым основанием Р (при Р>1) использует Р различных цифр а, которые обозначают последовательный ряд чисел от 0 и кончая числом Р-1. Эти цифры называются базисными.
Число записывается в виде последовательности Р-ичных цифр, которая разделена точкой на целую и дробную части. Если каждый из символов означает некоторую Р-ичную цифру, то запись числа имеет вид. Каждой цифре из этой последовательности принято определенное значение. Цифра, стоящая в некотором разряде, имеет значение в Р раз больше того, которое она имела бы в разряде с номером, меньшим на 1. И наоборот, в Р раз меньшее того, которое она имела бы в разряде с номером, большим на 1.
2. Позиционные системы счисления
Как было сказано, количество различных цифр, применяемых в позиционной системе счисления, называют ее основанием. Принимая за основание системы различные числа можно получить соответствующие системы счисления. К позиционным системам счисления, получившим наибольшее распространение, относятся десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления. Для того, чтобы отличать в какой системе представлено то или иное число, в дальнейшем будем записывать число с указанием используемой системы счисления. Например, - число 375 в десятичной системе счисления, а число - число 375 в восьмеричной системе счисления.