Просмотр содержимого документа
«Рабочая программа по алгебре и началам анализа. 10 класс профиль»
Муниципальное автономное общеобразовательное учреждение
Свердловская средняя общеобразовательная школа №2
городской округ Лосино-Петровский Московской области
УТВЕРЖДЕНО
Приказом
МАОУ Свердловская СОШ №2
г.о. Лосино-Петровский МО
от «30» августа 2019г.
№ 272/2-од
Рабочая программа
по алгебре и началам анализа
10 Б класс
(профильный уровень)
Составитель: Сушкова Эльвира Аверкиевна, учитель математики высшей категории
п.г.т. Свердловский
2019 г
Рабочая программа по алгебре для 10 Б класса в 2019-2020 учебном году составлена на основе:
основной образовательной программой среднего общего образования МАОУ Свердловская СОШ №2 г.о. Лосино-Петровский МО;
авторской программы по алгебре и началам анализа для общеобразовательных учреждений, допущенной Департаментом общего среднего образования Министерства образования Российской Федерации, под редакцией Т.А. Бурмистровой- М.: Просвещение, 2015;
Для реализации программы применяется учебник « Алгебра и начала анализа» для 10-11 кл. общеобразовательных учреждений /[Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.]. М.: Просвещение, 2017
Программа рассчитана на 35 недель учебного времени, 4 часа в неделю.
Планируемые результаты освоения учебного предмета.
Личностные результаты.
-сформированность мировоззрения, соответствующего современному уровню развития науки; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
-готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;
-навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
-готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
-эстетическое отношение к миру, включая эстетику быта, научного и технического творчества;
-осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем.
Метапредметные результаты.
Регулятивные УУД:
определять цель деятельности на уроке с помощью учителя и самостоятельно;
учиться совместно с учителем обнаруживать и формулировать учебную проблему;
учиться планировать учебную деятельность на уроке;
высказывать свою версию, пытаться предлагать способ её проверки (на основе продуктивных заданий в учебнике);
работая по предложенному плану, использовать необходимые средства (учебник, компьютер и инструменты);
определять успешность выполнения своего задания в диалоге с учителем.
Средством формирования регулятивных действий служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД :
ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг;
делать предварительный отбор источников информации для решения учебной задачи;
добывать новые знания: находить необходимую информацию, как в учебнике, так и в предложенных учителем словарях, справочниках и интернет-ресурсах;
добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.);
-перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы.
Средством формирования познавательных действий служит учебный материал и задания учебника, обеспечивающие первую линию развития - умение объяснять мир.
Коммуникативные УУД:
доносить свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне предложения или небольшого текста);
слушать и понимать речь других;
выразительно читать и пересказывать текст;
вступать в беседу на уроке и в жизни;
совместно договариваться о правилах общения и поведения в школе и следовать им;
учиться выполнять различные роли в группе (лидера, исполнителя, критика).
Средством формирования коммуникативных действий служат технология проблемного диалога (побуждающий и подводящий диалог), технология продуктивного чтения и организация работы в малых группах.
Предметные результаты.
-систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
-развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
-систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
-расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;
-развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
-знакомство с основными идеями и методами математического анализа;
- совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
- формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.
Содержание учебного предмета.
I. Действительные числа (18 ч)
Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателями. Преобразование выражений, содержащих абсолютную величину.
Основная цель —обобщить и систематизировать знания о действительных числах;сформировать понятие степени с действительным показателем; научить применять определения арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений.
Необходимость расширения множества натуральных чисел до действительных мотивируется возможностью выполнять действия, обратные сложению, умножению и возведению в степень. Рассмотренный в начале темы способ обращения бесконечной периодической десятичной дроби в обыкновенную обосновывается свойствами сходящихся числовых рядов, в частности, нахождением суммы бесконечно убывающей геометрической прогрессии.
Действия над иррациональными числами строго не определяются, а заменяются действиями над их приближенными значениями — рациональными числами.
В связи с рассмотрением последовательных рациональных приближений иррационального числа, а затем и степени с иррациональным показателем на интуитивном уровне вводится понятие предела последовательности.
Арифметический корень натуральной степени n 2 из неотрицательного числа и его свойства излагаются традиционно. Учащиеся должны уметь вычислять значения корня с помощью определения и свойств и выполнять преобразования выражений, содержащих корни.
Степень с иррациональным показателем поясняется на конкретном примере. Здесь же формулируются свойства степени с действительным показателем, которые будут использоваться при решении уравнений, неравенств, исследовании функций.
II. Степенная функция (18 ч)
Степенная функция, ее свойства и график. Взаимно обратные функции. Равносильные уравнения и неравенства. Иррациональные уравнения. Иррациональные неравенства.
Основная цель —обобщить и систематизировать известные из курса алгебрыосновной школы свойства функций; изучить свойства степенных функций с натуральным и целым показателями и научить применять их при решении уравнений и неравенств; сформировать понятие равносильности уравнений, неравенств, систем уравнений и неравенств.
Рассмотрение свойств степенных функций и их графиков проводится поэтапно, в зависимости от того, каким числом является показатель:
четным натуральным числом;
нечетным натуральным числом;
числом, противоположным четному числу;
числом, противоположным нечетному числу;
положительным нецелым числом;
отрицательным нецелым числом
Обоснования свойств степенной функции не проводятся, они следуют из свойств степени с действительным показателем. Рассмотрение равносильности уравнений, неравенств и систем уравнений и свойств равносильности проводятся в связи с предстоящим изучением иррациональных уравнений и неравенств.
Основным методом решения иррациональных уравнений является возведение обеих частей уравнений в степень с целью перехода к рациональному уравнению-следствию данного.
Иррациональные неравенства не являются обязательными для изучения всеми учащимися. При их изучении основным способом решения является сведение неравенства к системе рациональных неравенств, равносильной данному неравенству.
III. Показательная функция (12 ч).
Показательная функция, её свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств. Решение показательных уравнений с параметром. Решение уравнений и систем уравнений, содержащих модуль.
Основная цель -изучить свойства показательной функции,научить решатьпоказательные уравнения и неравенства, простейшие системы показательных уравнений и неравенств.
Свойства показательной функции полностью следуют из свойств степени с действительным показателем. Решение простейших показательных уравнений. Решение большинства показательных уравнений и неравенств сводится к решению простейших. Так как в ходе решения предлагаемых в этой теме показательных уравнений равносильность не нарушается, то проверка найденных корней необязательна. Здесь системы уравнений и
неравенств решаются с помощью равносильных преобразований: подстановкой, сложением или умножением, заменой переменных и т. д.
IV. Логарифмическая функция (19 ч).
Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. логарифмическая функция, ее свойства и график. логарифмические уравнения. Логарифмические неравенства. Решений уравнений и систем уравнений, содержащих модуль.
Основная цель —сформировать понятие логарифма числа;научить применятьсвойства логарифмов при решении уравнений изучить свойства логарифмической функции и научить применять ее свойства при решении простейших логарифмических уравнений и неравенств.
До этой темы в курсе алгебры изучались такие функции, вычисление значений которых сводилось к четырем арифметическим действиям и возведению в степень. Для вычисления значений логарифмической функции нужно уметь находить логарифмы чисел, т. е. выполнять новое для учащихся действие — логарифмирование.
Доказательство свойств логарифма опирается на его определение. На практике рассматриваются логарифмы по различным основаниям, в частности по основанию 10 (десятичный логарифм) и по основанию е (натуральный логарифм), отсюда возникает необходимость формулы перехода от логарифма по одному основанию к логарифму по другому основанию. Так как на инженерном микрокалькуляторе есть клавиши 1g и ln, то для вычисления логарифма по основаниям, отличным от 10 и е, нужно применить формулу перехода.
Свойства логарифмической функции активно используются при решении логарифмических уравнений и неравенств.
Изучение свойств логарифмической функции проходит совместно с решением уравнений и неравенств.
При решении логарифмических уравнений и неравенств выполняются различные их преобразования. При этом часто нарушается равносильность. Поэтому при решении логарифмических уравнений необходима проверка найденных корней. Поэтому при решении логарифмических неравенств нужно следить за тем, чтобы равносильность не нарушалась, так как проверку решения неравенства осуществить сложно, а в ряде случаев невозможно.
V. Тригонометрические формулы (27 ч).
Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом я тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов а и —а. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов.
Основная цель -сформировать понятия синуса,косинуса,тангенса,котангенсачисла; научить применять формулы тригонометрии для вычисления значений тригонометрических функций и выполнения преобразований тригонометрических выражений; научить решать простейшие тригонометрические уравнения sinх=а, соsх=а при а = 1, —1, 0.
Рассматривая определения синуса и косинуса действительного числа а, естественно решить самые простые уравнения, в которых требуется найти число а, если синус или косинус его известен, например уравнения sin а = 0, соs а = 1 и т. п. Поскольку для обозначения неизвестного по традиции используется буква х, то эти уравнения записывают как обычно: siпх = 0, соsх = 1 и т. п. Решения этих уравнений находятся с помощью единичной окружности.
Возможность выявления знаков синуса, косинуса и тангенса по четвертям является следствием симметрии точек единичной окружности относительно осей координат.
Равенство сов(—а) = сова следует из симметрии точек, соответствующих числам а и —а, относительно оси Ох.
Зависимость между синусом, косинусом, тангенсом и котангенсом одного и того же числа или угла следует из тригонометрической формы записи действительного числа и определения синуса и косинуса как координаты точки единичной окружности.
Формулы сложения доказываются для косинуса суммы или разности, все остальные формулы сложения получаются как следствия.
Формулы сложения являются основными формулами тригонометрии, так как все другие можно получить как следствия формулы двойного и половинного углов (не являются обязательными для изучения), формулы приведения, преобразования суммы и разности в произведение.
VI. Тригонометрические уравнения (18 ч).
Уравнения соsх=а,siп х=а,tgх=а. Решение тригонометрических уравнений. Примеры решения простейших тригонометрических неравенств.
Основная цель —сформировать умение решать простейшие тригонометрическиеуравнения ознакомить с некоторыми приемами решения тригонометрических уравнений.
Как и при решении алгебраических, показательных и логарифмических уравнений, решение тригонометрических уравнений путем различных преобразований сводится к решению простейших: сох=а,siп х=а,tgх=а.
Рассмотрение простейших уравнений начинается с уравнения сох=а, так как формула его корней проще, чем формула корней уравнения siп х=а Решение более сложных тригонометрических уравнений, когда выполняются алгебраические и тригонометрические преобразования, сводится к решению простейших.
Рассматриваются следующие типы тригонометрических уравнений: линейные относительно siп х, соs х или tg х; сводящиеся к квадратным и другим алгебраическим уравнениям после замены неизвестного; сводящиеся к простейшим тригонометрическим уравнениям после разложения на множители.
Повторение и решение задач (28ч).
Календарно-тематическое планирование
по алгебреи началам анализа в 10 Б классе
на 2019-2020 учебный год
140 ч.
№
п/п
Наименование разделов и тем
Плановые сроки
Скорректированные сроки
1. Повторене(6 ч).
1
Алгебраические выражения. Линейные уравнения и системы уравнений.
02.09-06.09
2
Числовые неравенства и неравенства первой степени с одним неизвестным
3
Квадратные корни.
4
Квадратные уравнения.
5
Квадратичная функция. Квадратные неравенства
09.09.-13.09
6
Контрольная работа (вводная)
2. Действительные числа(18 ч).
7
Анализ контрольной работы . Целые и рациональные числа